
Enhancing Trust in LLM-Generated Code Summaries with
Calibrated Confidence Scores
YUVRAJ VIRK, UC Davis, United States
PREMKUMAR DEVANBU, UC Davis, United States
TOUFIQUE AHMED, UC Davis & IBM Research, United States

A good summary can often be very useful during program comprehension. While a brief, fluent, and relevant
summary can be helpful, it does require significant human effort to produce. Often, good summaries are
unavailable in software projects, thus making maintenance more difficult. There has been a considerable body
of research into automated AI-based methods, using Large Language models (LLMs), to generate summaries
of code; there also has been quite a bit work on ways to measure the performance of such summarization
methods, with special attention paid to how closely these AI-generated summaries resemble a summary a
human might have produced. Measures such as BERTScore and BLEU have been suggested and evaluated
with human-subject studies.

However, LLM-produced summaries can be too long, irrelevant, etc: generally, too dissimilar to what a
human might say. Given an LLM-produced code summary, how can we judge if a summary is good enough?
Given some input source code, and an LLM-generated summary, existing approaches can help judge brevity,
fluency and relevance; however, it’s difficult to gauge whether an LLM-produced summary sufficiently
resembles what a human might produce, without a “golden" human-produced summary to compare against.
We study this resemblance question as a calibration problem: given just the summary from an LLM, can
we compute a confidence measure, that provides a reliable indication of whether the summary sufficiently
resembles what a human would have produced in this situation? We examine this question using several
LLMs, for several languages, and in several different settings. Our investigation suggests approaches to provide
reliable predictions of the likelihood that an LLM-generated summary would sufficiently resemble a summary
a human might write for the same code.

CCS Concepts: • Software and its engineering→ Software maintenance tools; Documentation;

Additional Key Words and Phrases: LLMs, Calibration, Code Summarization

ACM Reference Format:
Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed. 2024. Enhancing Trust in LLM-Generated Code
Summaries with Calibrated Confidence Scores. 1, 1 (December 2024), 21 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Summaries and comments in code help maintainers understand code. In an empirical study, Hu
et al surveyed developers [Hu et al. 2022] in several major software development organizations
about software summarization practices. The survey responses indicated that developers value
code summaries, and, furthermore, that they would appreciate tools to automatically generate such

Authors’ addresses: Yuvraj Virk, UC Davis, Davis, California, United States, ysvirk@ucdavis.edu; Premkumar Devanbu,
UC Davis, Davis, California, United States, ptdevanbu@ucdavis.edu; Toufique Ahmed, UC Davis & IBM Research, Davis,
California, United States, tfahmed@ucdavis.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
XXXX-XXXX/2024/12-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: December 2024.

ar
X

iv
:2

40
4.

19
31

8v
2

 [
cs

.S
E

]
 3

 D
ec

 2
02

4

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed

summaries for them. Automated Code Summarization has been a very active area of research [Zhang
et al. 2022; Zhu and Pan 2019] for quite a while. Deep learning, for code and natural language,
has helped advance summarization performance to new highs, with the current state-of-the-art
achieved via the use of in-context learning (or prompt engineering) with large language models
(LLMs) [Ahmed et al. 2024; Nashid et al. 2023].

Fig. 1. Example of two LLM-generated summaries with nearly identical, raw confidences but differing quality.
The generated summary on the left is dissimilar to what the developer wrote, but the confidence is high. The
generated summary on the right is similar to what the developer wrote, and the raw confidence is high, as it
should be; however, the raw confidence is also high on the left! Our method preserves the high confidence for
the good summary but produces a low confidence for the poor one.

While neural models are increasingly effective at code summarization, there is a fundamental and
well-known problem with LLMs . . . they make mistakes [Jesse et al. 2023; Pan et al. 2024; Tambon
et al. 2024]. Studies [McBurney and McMillan 2015; Shi et al. 2022] have found that automated code
summarization methods are promising, but often fail to produce “acceptable" summaries. Thus,
given a generated summary, it would be useful to have an indication as to whether the generated
summary is a “acceptable" one. Summary quality is a human judgement; there have been studies of
how humans evaluate code summaries, which we review in the paper. For reasons clarified below
in Section 2, and supported by several prior publications [Hu et al. 2022; Stapleton et al. 2020] we
use “acceptable" similarity to human-written summaries as our primary correctness measure.
In our study, we found that state-of-the-art approaches (using CodeLlama) sometimes produce

Java code summaries at acceptable levels of similarity to human-written summaries (using measures
that previous studies [Haque et al. 2022] have found to be reliable proxies of human similarity
judgements). In our study, we find that (arguably) acceptable levels of similarity are attained
between 10-30% of the time. This suggests that about 70-80% of the time, these approaches are
producing summaries that humans may not find acceptably similar to human summaries. But how
do we know whether the summary will be acceptable or not without the presence of the reference?
Can raw model confidence, taken from model output without change, help us in such a scenario?
Figure 1 provides two example generated summaries, however, one resembles the developer’s
comment, and one doesn’t! Although the dissimilar summary doesn’t contain any falsehoods about
the code, it still omits information the method’s developer thought necessary to include. Certainly,
the similar one is more desirable than the dissimilar one. Unfortunately, the raw confidence does
not show much difference (0.82 vs. 0.81)! Thus, the raw confidence is not particularly helpful to
help determine which one is more acceptable.

Thus, summaries provided by LLMs are sometimes good and useful, but not always. Given this
situation, it is desirable for LLM-based code-summarizers to provide a more reliable indication

, Vol. 1, No. 1, Article . Publication date: December 2024.

Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores 3

of confidence, that a specific summary generated from code, is sufficiently similar to what a
human might have produced. If this confidence measure is reliable, then a summary produced
with high confidence can be accepted verbatim, and used directly to help understand the code;
summaries at low confidence might be simply rejected; and summaries at a medium confidence
might be considered partially useful, predicating some further examination of the code. This is
where calibration (discussed in Section 2) becomes relevant. Calibration refers to the agreement
between the predicted confidence and the actual outcome. A well-calibrated model will produce
probability estimates that match the true likelihood of an event. For example, if a model predicts
that an event has a 80% chance of occurring, then that event should indeed occur approximately 80%
of the time across many predictions with the same probability. The model’s predicted confidence
in Figure 1 shows that the LLMs are typically not well-calibrated for this task and are thus less
reliable.
In this paper, we study the issue of providing such a confidence measure, which is a reliable

indicator of how likely a generated summary is correct, viz., sufficiently similar to a human-
generated summary. For instance, in Figure 1, had our approach been used, then the more desirable
outcome has a higher confidence (0.87 vs 0.42) . . .; thus, our approach would allow for better
decision making as to when a summary could be relied upon.

We make the following contributions.

• We introduce the problem of calibration for code summarizers; we frame “correctness" of
generated summaries (with motivation drawn from the literature) in terms of being sufficiently
similar to human-generated summaries.

• Using several thresholds of similarity measures, corresponding to several justifiable settings
of “correctness" (i.e., similarity to human-produced summaries), we examine the calibration
of LLMs.

• We show how LLMs augmented with in-context learning, and using modern rescaling tech-
niques, can provide very good calibration, for the code summarization task.

• While later tokens in a code summary have very high probabilities and exhibit overconfidence,
earlier tokens are better calibrated.

Our findings provide a way for developers to make well-justified decisions regarding the use of
(sometimes inaccurate) summaries generated by LLMs.

2 BACKGROUND & MOTIVATION
We begin with a brief summary of the current state of code summarization, and immediately dive
into the problem of calibration.

Code summarization is important for code understanding and maintenance [Sridhara et al. 2010];
building tools that can automatically summarize a given piece of code (method or snippet) is an
important problem that has received considerable attention [Zhang et al. 2022; Zhu and Pan 2019].
as output. Neural approaches have been applied to code summarization. Initial approaches used
pre-training + fine-tuning, with models such as CodeBERT [Feng et al. 2020], PLBART [Ahmad et al.
2021], PolyGlot [Ahmed and Devanbu 2022b], and CodeT5 [Wang et al. 2021]. Current approaches
rely on Large Language Models (LLMs) like the GPT-3 model (e.g., Code-Davinci-002) [Ahmed
and Devanbu 2022a; Brown et al. 2020; Nashid et al. 2023]; with such powerful LLMs, in-context
learning techniques e.g few-shotting [Ahmed and Devanbu 2022a; Brown et al. 2020] and semantic
augmentation [Ahmed et al. 2024], attain state-of-the art code summarization performance [Ahmed
and Devanbu 2022a; Ahmed et al. 2024] without any additional training. So, in this paper, our focus
is on LLM-based code summarizers that use in-context learning.

, Vol. 1, No. 1, Article . Publication date: December 2024.

4 Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed

Despite the progress in code summarization, code summaries are still in general, produced by
imperfect, flawed neural models. In our studies, we found that less than 30% of generated summaries
could be considered high quality. In this setting, users could benefit from guidance as to whether a
potentially flawed summary from an imperfectly performing neural model can be relied upon.

2.1 Calibration: How to use unreliable outputs from flawed models
Neural (more generally, Machine-learning) models are probabilistically optimized over the training
set. On a distinct test set , they may not always produce high-quality results. How then, is one to
use these flawed models in practice? This question relates to the concept of Calibration.
For simplicity, let us first consider a neural model that produces a simple binary prediction,

which is not always correct. Let’s further assume that the prediction is associated with a confidence,
which is a probability measure (0 <= 𝑝 <= 1). For this prediction to be reliable, we would like the
output confidence to reliably indicate its empirical rate of correctness; thus whenever the model
is 60% confident (i.e, output probability is 0.6) then we would like to be correct about 60% of the
time. If this is the case, the model is said to be well-calibrated; model confidence is a good predictor
of expected outcomes, and thus helpful in determining the expected value of a decision policy.
With a well-calibrated weather-forecasting model, e.g, users can respond appropriately to different
confidence levels: for instance, using a hat at 10% confidence of rain, an umbrella at 50% or above,
or taking a bus at 80% or above.

Fig. 2. Sample of well and poorly calibrated models

Quantitatively, Calibration is a relation-
ship (Figure 2) between two quantities: con-
fidence on the x-axis, typically a probabil-
ity value, and the rate of correctness (y-axis),
typically a normalized frequency (values
∈ [0, 1]) indicating how often the model is
empirically correct, when predicting at the
confidence values along the x-axis. Figure 2
presents two reliability plots [Wilks 1990] to
show the difference between a well-calibrated model and a poorly calibrated model; in the plot,
the predicted confidences are binned along the x-axis, over 10 ranges 0 − 0.1, 0.1 − 0.2, . . ., and
the fraction of each bin that is correctly predicted is shown on the y-axis. In a well-calibrated
model, the observed model correctness rate is well-aligned with the model confidence; for a poorly
calibrated model, it is not. Clearly, improving calibration is a worthy goal; to do so, we first have to
measure it.

2.1.1 Measuring Calibration. A calibration metric measures the alignment of a model’s confidence
(in its predictions) with the correctness thereof. We now discuss two main measures, Brier score,
and ECE. Note again, we first consider models with binary outcomes: either the model prediction
is correct, or it is wrong.
Brier Score [Brier 1950] is the mean squared difference between the predicted probabilities and
the actual outcomes; it measures (on average) how well a sample predicted confidence align with
the actual correctness on that sample. A perfectly calibrated model would have a Brier Score of 0,
indicating that its predicted probabilities match the observed outcomes exactly. Mathematically,
the Brier Score 𝐵𝑟 for a set of predictions, of sample size 𝑁 is calculated as follows:

𝐵𝑟 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑝𝑖 − 𝑜𝑖)2 (1)

, Vol. 1, No. 1, Article . Publication date: December 2024.

Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores 5

Where 𝑝𝑖 is probability (confidence) assigned to the 𝑖𝑡ℎ sample prediction, and 𝑜𝑖 is the 𝑖𝑡ℎ sample
outcome (1 for correct, 0 for incorrect). Lower 𝐵𝑟 indicate better calibration, with 0 being perfect
calibration, with a maximum (worst) possible score of 1. 𝐵𝑟 thus measures the alignment of a
model’s confidence estimates with the actual rate of empirical correctness.

We note that Brier scores should be gauged relative to a base rate. A naïve model, which always
outputs (as confidence) the empirical base rate 𝑝 , (for example, if it rains 10% of the days, the model
predicts rain with 𝑝 = 0.1 confidence every day) will achieve a score called the reference Brier
score, 𝐵𝑟𝑒 𝑓 , which analytically is 𝑝 (1 − 𝑝). Thus, if it rains about 10% of the days, the base rate is
0.1; a model that always outputs 0.1 as its confidence will score 0.1 ∗ 0.9 = 0.09 Brier. Evidently,
𝐵𝑟𝑒 𝑓 ∈ (0, 0.25].

Given the possibility of low Brier scores from actually very “unskilled" naïve models, we need to
normalize the measured Brier for a given model; we discuss this below, as “skill scores".
Brier Skill Score is a normalized measure ∈ (−∞, 1] for assessing the reliability of a model’s
confidence, relative to a naïve model always just providing the base rate as the confidence. Such
a model reaches the 𝐵𝑟𝑒 𝑓 Brier score of 𝑝 (1 − 𝑝), which can be quite low, depending on 𝑝 . For a
two-class prediction, with a 10% overall positive rate: a naïve predictor always guessing one class
with 10% confidence yields 𝐵𝑟𝑒 𝑓 ≈ 0.09. A better-calibrated model can achieve a Brier Score lower
than this unskilled 𝐵𝑟𝑒 𝑓 value; a bad model, could do worse! The Skill Score (SS) quantifies this
improvement (or decline) compared to the baseline 𝐵𝑟𝑒 𝑓 , calculated as:

𝑆𝑆 =
(𝐵𝑟𝑒 𝑓 − 𝐵𝑚𝑜𝑑𝑒𝑙)

𝐵𝑟𝑒 𝑓
(2)

A positive SS (perfect score = 1.0) indicates improvement over the baseline, while a negative SS
suggests predictions worse than the baseline. Even small positive values of SS can sometimes
indicate good skill. The German weather forecasting service, Deutsche Wetterdienst, sets a minimum
threshold of 0.05 for a Skill Score to indicate good forecast quality reference [Wet 2024]. Another
reference point comes from the American data journalism site 538, which reports a skill score of
approximately 0.13 in forecasting World Cup games [Wezerek 2023]

However, Brier isn’t the only metric that’s used.
ECE. (Expected Calibration Error) [Naeini et al. 2015] is also used to measure calibration. It is
somewhat more complex: it averages the difference between the predicted confidence and actual
correctness rates across different confidence levels. Intuitively, on a reliability diagram (such as
Figure 2) it amounts to measuring the (normalized) area between the diagonal ideal and the actual
empirical bars. A lower ECE indicates better calibration, meaning the predicted probabilities closely
match the actual rates. Conversely, a higher ECE indicates poorer calibration, indicating a mismatch
between predicted and actual rates.

𝑎𝑐𝑐 (𝐵𝑖) =
1
|𝐵𝑖 |

∑︁
𝑜𝑖 ∈𝐵𝑖

𝑜𝑖 (3)

𝑐𝑜𝑛𝑓 (𝐵𝑖) =
1
|𝐵𝑖 |

∑︁
𝑝𝑖 ∈𝐵𝑖

𝑝𝑖 (4)

𝐸𝐶𝐸 =

𝑚∑︁
𝑖=1

| 𝐵𝑖 |
| 𝑇 | |acc(𝐵𝑖) − conf(𝐵𝑖) | (5)

To compute ECE, we first partition the
dataset into 𝑛 bins 𝐵𝑖 , 𝑖 = 1 . . . 𝑛 based on con-
fidences (predicted probabilities). For instance,
the bins could range from confidence levels of
[0-0.1) to [0.9-1.0). For each bin, we calculate the
average confidence, 𝑐𝑜𝑛𝑓 (𝐵𝑖) (predicted prob-
ability), and empirical accuracy, 𝑎𝑐𝑐 (𝐵𝑖) (pro-
portion of true positives). Following this, we
determined a weighted difference by (i) com-
puting the absolute difference between the average confidence and accuracy in each bin and (ii)
weighting by the proportion of samples in each bin. Finally, we sum the weighted differences across

, Vol. 1, No. 1, Article . Publication date: December 2024.

6 Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed

all bins to get the ECE. ECE provides a more nuanced evaluation of calibration across different
confidence levels compared to metrics like the Brier Score, which aggregates errors across all sam-
ples without considering confidence levels. This makes ECE particularly useful for understanding
how well a model’s confidence estimates align with its performance at different confidence levels.
Mathematically, the ECE is calculated in three steps below (Note: 𝐵𝑖 denotes the set of elements
in each bin; 𝑜𝑖 is an indicator varible, = 1 if the prediction is right, and = 0 if wrong; 𝑝𝑖 is the
confidence (probability) associated with the prediction)

ECE can be intuitive, and visually appealing: but it can mislead, since the binning approach may
vary. For example, if it usually rains 10 days a year in Los Angeles, a naïve (technically, “unskilled")
model could always predict rain with a probability of 10

365 = 0.0275. Such a model would have a
single bin with a confidence of 0.0275, and an empirical correctness rate of nearly the same (on a
yearly basis), yielding a perfect (but misleading) ECE of zero.
ECE and Brier Score serve slightly different purposes: the Brier Score measures the ability to

correctly discriminate output categories and the calibration of output probability for each sample,
while the ECE specifically measures calibration. However, the ECE can be misleadingly low, as
noted earlier for the unskilled predictor. Additionally, careful binning is necessary as it can impact
ECE scores.

Thus far, we have considered calibration with respect to a model with a binary output. What if
the output is a sequence of tokens, like a code summary? Calibration in this situation is a bit more
complex, but we still need two notions: confidence, and correctness which are used to calculate Brier
Skill score, and 𝐸𝐶𝐸. We begin with approaches to evaluate confidence of model-generated code
summaries, and then turn to correctness.

2.2 Confidence in a generated summary
Thus far, our discussion of calibration has focused settings where there is a single, binary prediction,
with an associated confidence (probability) measure. With generated code summaries, the situation
is different. Here, we have a sequence multiple tokens (usually sub-tokens) generated from a
softmax layer; from this layer, we can sequentially select a most likely token, with an associated
probability. This would be “greedy" decoding; other methods are possible. Whatever method is
used, one can obtain a generated code summary, which contains a sequence of tokens, each with
an associated probability. Since calibration measures rely on a single confidence associated with an
entire output, we would need a way to summarize the entire sequence of probabilities. The simplest
approach is to just take a mean (geometric or arithmetic) of this sequence.

It’s worth noting here that LLMs are per se trained to auto-regressively re-generate the sequence
of tokens in the training set, at the highest possible confidence. Thus, (if a given test sample isn’t
too “distant" from the training data) it is reasonable to expect that the per-token confidence, is a
plausible indication that a generated sequence is, in some sense, appropriate in context, relative to
the data the model is trained on.

We discuss further details in the methods section.

2.3 Correctness of a generated summary
For a binary prediction (e.g. “Will it rain tomorrow”) the notion of correctness is simple (either it
rained or didn’t). For a generated sequence of tokens constituting a code summary, what exactly is
correctness? Exact match? Partial match? Same “meaning”? Fortunately, there has been a quite a
bit of work on evaluations of code summaries [Haque et al. 2022; Mastropaolo et al. 2024; Roy et al.
2021; Shi et al. 2022].

, Vol. 1, No. 1, Article . Publication date: December 2024.

Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores 7

Hu et al [Hu et al. 2022] conducted a human-subject study to identify the criteria that affect
practitioners’ judgement of a code summarization technique’s performance. The important evalua-
tion criteria (for summaries) they identify include content adequacy (which they define roughly
as semantic similarity between the input code and the given summary), concisenes, fluency, useful
information content not in code, and similarity to original human-written comments. It should be
noted that of the above 5 criteria, the first 4 are properties (functions) of the input code and the
candidate summary, and potentially could be evaluated with just those two; the last requires access
to a human-written summary, which is typically not available when one is using a LLM to generate
code summaries. Moreover, other studies have reinforced the importance of similarity to human-
written summaries. An additional human-subject study, by Stapleton et al [Stapleton et al. 2020]
compared how human-written and machine-written summaries helped with comprehension tasks.
They found that human-written summaries were associated with significantly better comprehen-
sion performance. This body of human-subject studies suggests that generated summaries that
better resemble human-written summaries are more desirable. In this paper, we therefore focus on
similarity to human-written summary as our “goodness" criteria.

Even prior to He et al’s and Stapleton et al’s human-subject studies, researchers have sought the
right metrics [Haque et al. 2022; Roy et al. 2021; Shi et al. 2022; Stapleton et al. 2020] to measure
the similarity of a machine-generated summary to a human-produced summary. Metrics such as
BLEU [Papineni et al. 2002], ROGUE [Lin 2004], METEOR [Banerjee and Lavie 2005] have been
used to measure lexical (word n-gram level) similarity; but these have been criticized as not being
well-aligned to human judgements of similarity in the case of code summaries [Stapleton et al.
2020]. Haque et al. [Haque et al. 2022] empirically compared several different lexical & semantic
metrics of similarity, and found that certain embedding-based metrics such as BERTScore are
better-correlated with human evaluations of summary similarity (to a reference) than purely lexical
measures. They report that SentenceBERT has the highest correlation with human evaluations of
summary similarity.

We re-analyzed all the data & metrics used by Haque et al [Haque et al. 2022], from a somewhat
different perspective: Can we reliably predict sufficient similarity, of a model-generated summary?
For our perspective we found that both BERTScore and SentenceBERT could be useful. Note that
in our setting, we seek to predict sufficiently high semantic similarity (above a threshold value, as
discussed in subsection 4.4) of a generated summary, without knowing the Gold (human-generated)
summary. We would like to generate a well-calibrated confidence signal (associated with the
generated summary) that is a reliable indicator of the empirical likelihood of sufficient semantic
similarity between generated summary and the gold summary (were it available) being high enough.
Our re-analysis of the Haque et al data is discussed in methods section, § 4.4.
An Example Scenario: To illustrate our approach: consider a userU who is dealing with code
𝐶 that has no human-written summary; U then generates a summary 𝑆 from 𝐶 , using a neural
model. How would U evaluate 𝑆 , relative to the code 𝐶? Considering Hu et al’s 5 criteria: U
could judge fluency and conciseness just from reading 𝑆 . Recently, Mastropaolo et al. [Mastropaolo
et al. 2024] introduced SIDE, a way to automatically measure content adequacy of a candidate
summary using just the code and the candidate summary (and no human-written reference). Finally,
regarding useful content not in the code,U could read 𝐶 and 𝑆 , and make a qualitative judgement
as to whether 𝑆 contains relevant information not obvious from 𝐶 . Finally, turning to similarity
to developer-written comments, U currently has no way develop a reliable level of confidence in
𝑆 , without access to the developer-written summary. Given the importance prior work places on
similarity to human-written summary, we focus our attention on developing a well-calibrated
confidence predictive of such similarity. Now, provided with a well-calibrated confidence for 𝑆

, Vol. 1, No. 1, Article . Publication date: December 2024.

8 Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed

, U could make a decision that best suits their needs. Thus, if 𝐶 is critical for U’s work, and is
really important to understand, U might accept only very high-confidence summaries, and ask a
human in all other cases. In cases where 𝐶 is less critical, and a surface understanding is sufficient,
a moderate level of confidence in 𝑆 might be sufficient. If 𝑆 is delivered at a very low confidence,U
might just reject it.
The above scenario illustrates the value of associating a well-calibrated confidence with a

summary generated by a neural model. A different, but analogous scenario, regarding the use of
well-calibrated confidences by a user considering whether to use model-generated code, has been
discussed in prior work [Huang et al. 2023; Johnson et al. 2023; Spiess et al. 2025]. We are now
ready to present our research questions.

3 RESEARCH QUESTIONS
Given an input code 𝐶 and a generated summary 𝑆 , our study aims to find a way to compute
well-calibrated confidence signal, associated with a useful standard of correctness for 𝑆 . Our research
questions are animated by this central goal.

In the first research question, we study whether an LLM’s confidence in its generated summary
can be used to predict the quality of its generated summary. As previously established, we evaluate
summary quality using metrics measuring BERTScore similarity to human-produced summaries.
We first explore whether an LLM’s log-probabilities, can be directly used as a reliable confidence
signal of the empirical likelihood of such similarity. For correctness, we transform the continuous
BERTScore value into a binary indication of sufficient similarity, using thresholding: a summary is
considered correct if it has a high enough BERTScore value.We try several approaches to obtaining a
summary confidence measure from per-token LLM-generated probabilities, and several approaches
to BERTScore thresholding. These are further discussed in Methods Section 4.4.

RQ 1. How well-calibrated are the LLM-produced confidence measures across all the tokens in the generated
summary?

We do find that confidence measures directly calculated by averaging LLM per-token probabilities
don’t work very well. We try rescaling, which is a method used to adjust a model’s confidences to
better align with the observed frequencies of events. In this paper, we use Platt rescaling; please
see discussion in Methods section.

RQ 2. How does rescaling affect the calibration of various LLMs with respect to summary correctness?

In the first two research questions, we measured a LLM’s confidence using its own calculated
probability (confidence), over all the tokens in the generated output. However, in our examination
of the calculated probabilities from the model, we found that per-token probabilities change quite a
bit from the beginning of the generated sequence, towards the later tokens; we studied potential
differences in calibration across the length of the generated sequence.

RQ 3. Are earlier tokens in the generated summary better calibrated than later tokens?

These questions taken together, constitute, to our knowledge, the first detailed examination of
the calibration of LLMs with respect to the code summarization task.

4 METHODOLOGY
We begin with a description of the models & prompting strategies we used for the experiments;
and then into our approach to calculating confidence, determining correctness, and calculating
calibration.

, Vol. 1, No. 1, Article . Publication date: December 2024.

Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores 9

4.1 Models

GPT-3.5-Turbo. GPT-3.5 models perform well at both comprehension and generation, for both
natural language and code [Guo et al. 2024]. At the time of experimentation, GPT-3.5-Turbo was
the most capable and affordable option among these models. Although it is primarily optimized for
chat-based interactions, it also performs well in non-chat tasks. GPT-3.5-Turbo1 can generate up to
16,385 tokens, including the prompt tokens.
Code-Llama-70b. The Code Llama [Roziere et al. 2023], family of language models are tailored for
coding tasks. It offers leading performance among open models. It has infilling capabilities, support
for extensive input contexts, and zero-shot instruction-following abilities. The family includes
foundation models, Python-specialized variants, and instruction-following models, each with 7B,
13B, 34B, and 70B parameters. Trained on 16k-token sequences, these models support inputs of up
to 100k tokens. Notably, Code Llama achieved state-of-the-art results on various code benchmarks,
at the time of experimentation. We use the larger 70B parameter model for our experiments, to get
better performance.
DeepSeek-Coder-33b Instruct. The DeepSeek-Coder series introduces open-source code models
ranging from 1.3B to 33B parameters, trained from scratch on a massive 2 trillion-token dataset [Guo
et al. 2024]. These models, pre-trained on high-quality project-level code corpora, utilize a fill-in-
the-blank task with a 16K window to enhance code generation and infilling. Extensive evaluations
demonstrate that DeepSeek-Coder achieves state-of-the-art performance among open-source code
models across various benchmarks, outperforming closed-source models like Codex and GPT-3.5.
We use the 33B paramater model for our study.

4.2 Prompting Methods for Code Summaries
The above models are used with state-of-the-art prompting techniques that have been demonstrated
to work well for code summarization.
Retrieval Augmented Few-shot Learning. Few-shot learning works well for both Natural
Language Processing [Brown et al. 2020] and Software Engineering [Ahmed and Devanbu 2022a;
Nashid et al. 2023]: we present the models with a few exemplars as query-answer pairs (method-
comment pairs in this setup) and instruct the model to answer our final query (with just the method).
Prior works show that few-shot learning performance can be improved using samples relevant to
the query, identified using a retrieval algorithm [Ahmed et al. 2024; Nashid et al. 2023]. Prior work
also shows that the BM25 retrieval algorithm works better than vanilla few-shot learning for many
SE tasks (e.g., code summarization, program repair, and assertion generation), so in this paper, we
use few-shots retrieved with BM25.
Automatic Semantic Augmentation of Prompt (ASAP). Chain-of-thought [Wei et al. 2022] has
been found to be effective for several tasks in NLP: providing the model with examples comprising
explicit intermediate reasoning steps improves performance. For SE, Ahmed et al. [Ahmed et al.
2024], showed a workable approach to extracting such “intermediate steps" using static analysis
algorithms; this approach enhances model performance. They used GitHub repository information,
identifier type with scope, and dataflow information. Combined with BM25, this approach yielded
state-of-the-art performance for code summarization tasks [Ahmed et al. 2024].
We therefore tried BM25 few-shot, also together with ASAP-based chain-of-thought, as our

prompting strategy.

1https://platform.openai.com/docs/models/gpt-3-5-turbo

, Vol. 1, No. 1, Article . Publication date: December 2024.

10 Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed

4.3 How to measure models’ confidence in a token sequence? (RQ1)
An LLM’s per-token probabilities reflect the likelihood of a token appearing in the same context in
the (human-produced) training data. Therefore, wemay expect a sequence-level probability to reflect
the likelihood a generated summary is similar to a human-produced one. Still, the probabilities are
calculated by the model per-token; so given a sequence of 𝑁 per-token probabilities, how should
we compute a single representative probability for the entire sequence?

The combined sequence-level probability is (under an independence assumption) the product of
per-token probabilities, and is usually very small, and varies with length. So, we normalize, using
the 𝑁 -th root of the product i.e. the geometric mean of probabilities. The arithmetic mean offers
another option; however, since the product, not the sum, of individual probabilities better represents
the probability of a sequence, we prefer the geometric mean. Empirically, we also consistently
found better calibration when using the geometric mean over the arithmetic mean, since it less
sensitive to large token-probability values (and thus reduces risk of overconfidence).

4.4 Evaluating similarity to human-produced summaries (RQ1)
In Section 2.3 we described the range of available metrics, and justified our focus on measures of
the similarity to human-produced summaries. To evaluate the calibration of code summarization
and answer each RQ, we need a binary notion of correctness which separates a good and bad
summary. Our notion of correctness is sufficient similarity to human-produced summaries; this
requires thresholding similarity metrics, which are real-valued quantities. We first determine these
thresholds using available data from an existing human subject studies, and then next use these
thresholds to study calibration performance of 3 models, on a much larger dataset used for studies
of automated code summarization.
Dataset used for Setting Correctness Threshold We use the Haque et al. [Haque et al. 2022]
dataset, which includes reference and generated summaries for 210 Java methods. For each Java
method, it includes 3 human-assigned similarity ratings. Human raters select from 4 ratings ranging
from "Strongly Disagree" to "Strongly Agree" indicating their agreement that the generated summary
is similar to the reference. Haque et al. [Haque et al. 2022] used their data to analyze several different
syntactic and semantic similarity metrics, and found that the semantic metric SentenceBERT offered
the best correlation with human ratings.
Following their methodology, for each code method, we take the mean of the 3 human ratings

to produce an aggregate, representative rating. We use this dataset to evaluate how accurately
different automatic similarity metrics classify human agreement vs. disagreement on a summary’s
similarity to the reference human-written summary. For our purposes, to qualify as a “correct"
summary, the average human rating in the dataset must indicate at least an “Agree" rating.

Methodology for Selecting Thresholds We wanted thresholds for automated similarity metrics
that are most consistent with this “Agree" level of human judgement of similarity. An optimal metric
and threshold should classify all summaries that humans judge as similar as correct (perfect recall)
while avoiding wrong classifications (perfect precision). As expected, all the metrics in Haque et al
were imperfect; however, for illustration, with our criterion for correctness, we show an AUC-ROC
curve for BERTScore (Figure 3) with an AUC of 0.86, which suggested that this metric, while not
perfect, was a reasonable proxy for human judgement of similarity.
Given imperfect metrics, there are different ways to select different thresholds, based on the

desired outcome. Lower thresholds would offer higher recall, but risk including summaries that
may not resemble gold summaries. Higher thresholds would include fewer summaries, but ones
more likely to resemble the gold ones. A cautious developer may want higher precision, lower

, Vol. 1, No. 1, Article . Publication date: December 2024.

Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores 11

recall; a less cautious developer might want some reasonable summary, even if lacking assurance
of similarity to human summaries. For our purposes here, we would like to evaluate calibration in
regards to different thresholds.

Fig. 3. BERT-Score ROC Curve

Still, to obtain results for a range of settings,
we wanted to obtain a workable set of thresh-
olds over several different trade-offs, specifi-
cally: high recall, high precision, and optimal
F1. To identify workable thresholds, we per-
form a grid search over the similarity metrics
(from Haque et al), and threshold values, at
0.01 intervals to identify metric-threshold pairs
meeting several criteria: 1) the highest recall
while maintaining a high precision (> 0.9) 2)
the highest precision with high recall (> 0.9)
3) Highest F1 score (harmonic mean of preci-
sion and recall). These metrics and thresholds
respectively prioritize cautious, lenient, and bal-
anced classifications of good vs. bad summaries, as viewed from the human judgement data. For
each condition, the grid search respectively produces: 1) BERTScore at threshold 0.89 for high
precision 2) Sentence-Bert at threshold 0.80 for high recall and 3) BERTScore at threshold 0.49 for
optimal F1. We report results for all these settings. For illustration, Figure 3 (box) shows the two
threshold values selected for BERTScore: for highest precision at at least 0.9 recall, the threshold is
0.89; for optimal F1, the threshold is 0.49.

4.5 Experimental Dataset
After setting the correctness thresholds for the BERTScore metric using the data set from [Haque
et al. 2022], we needed a different dataset for the Calibration experiments. We use the Java and
Python code summarization datasets from the CodeXGLUE [Lu et al. 2021] Benchmark for evaluating
the calibration of the confidence values generated from LLM per-token probabilities. CodeXGLUE
includes 14 datasets covering 10 Software Engineering tasks. Java and Python datasets contain
164,923 and 251,820 training samples, respectively. We use BM25 [Robertson et al. 2009] algorithms
to retrieve relevant samples from these datasets for few-shotting. For the test set, we randomly
select 5000 samples from each language. Only the training partition was used for BM25 retrieval. It
should be noted that the CodeXGLUE has been de-duplicated, reducing the risk that an example
from the test set would appear as a retrieved few-shot sample. It should also be noted that golden
(human-written) summaries are available in this dataset; generated summaries can be compared
with golden summaries to see if the semantic similarity score is above the given threshold.

4.6 Rescaling (RQ2)
Rescaling involves adjusting the predicted probabilities of a model to better align with the observed
frequencies of events; this adjustment is typically done by fitting a low-parameter curve, using
some of the data. Platt Scaling [Platt et al. 1999] is a commonly employed method in calibration,
where a logistic regression model is fitted to the predicted probabilities alongside the corresponding
true outcomes. Through this process, the model fine-tunes the predicted probabilities to more
accurately reflect the true probabilities of events. While there are other rescaling approaches [Guo
et al. 2017; Zadrozny and Elkan 2001, 2002], we use Platt scaling, since it has been successfully in
prior software engineering work [Spiess et al. 2025].

, Vol. 1, No. 1, Article . Publication date: December 2024.

12 Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed

To fit the Platt rescaling, we employ 5-fold cross-validation, where for each fold, we utilize the
other 4 folds as training data and apply the learned regression to our target fold. We repeat this
process for all other folds to obtain rescaled values for all samples. To accurately evaluate that
rescaling is robust, we construct our folds such that each fold contains samples from different sets
of repositories. This way, our test set is always pulled from different repositories than our training
set; the reported Brier (and Skill) scores are calculated cumulatively over all folds for a more robust
estimate.

4.7 Using the first tokens to compute confidences (RQ3)
Each token generated in a summary sequence successively constrains the next tokens in the
sequence. For instance, the first few tokens might include an identifier, making the next verbs,
prepositions, nouns etc most related to that identifier. Our initial study suggested that later tokens
in a code summary have higher probabilities.
Thus, we expect that an initial token-sequence of length 𝑡 might provide the best-calibrated

summary confidence metric; this 𝑡 becomes a hyper-parameter to be tuned. Our method selects the
parameter 𝑡 that maximizes skill score. Similar to Platt Scaling, we employ 5-fold cross-validation.
For each fold, we utilize the other 4 folds to identify the number of tokens 𝑡 that maximizes skill
score, and apply this hyperparameter 𝑡 to our target fold. We repeat this process for all other folds
to obtain calibration results using the first 𝑡 tokens for all samples.
In order to test whether using the first 𝑡 tokens significantly improves calibration over using

all tokens, we test the statistical significance of the difference in Brier scores between these 2
independent treatments. The Brier score is the mean squared error (MSE) of the confidence scores
(see Eq. 1). Thus, we apply a paired t-test to determine whether the Brier scores are significantly
different [Ott and Longnecker 2015]. We adjust produced p-values using the Benjamini-Hochberg
procedure to reduce false discovery risk [Virtanen et al. 2023].

5 RESULTS
5.1 RQ1 Calibration: LLM Confidence vs. Summary Correctness
We now present calibration results for summaries generated using few-shots retrieved by BM25.
Table 1, Figure 4a and 4b show the raw calibration with respect to the optimal F1 thresholded
BERTScore metric. Both the Brier score and ECE are undesirably high. Additionally, we observed a
negative skill score for all cases. The Brier score ranges from 0.25 to 0.57, which are rather bad,
indicating worse than random performance. For the CodeLlama-70b model, the model’s success
rate is good for both Java (26%) and Python (23%). However, while these calibration values are poor,
there is clearly some signal in the reliablity diagrams.

Success Rate ECE (↓) Brier (↓) Skill score (↑)
Language Model

Java CodeLlama-70b-hf 0.26 0.31 0.27 -0.40
deepseek-coder-33b-instruct 0.23 0.34 0.27 -0.53
gpt-3.5-turbo 0.19 0.49 0.39 -1.52

Python CodeLlama-70b-hf 0.23 0.31 0.25 -0.45
deepseek-coder-33b-instruct 0.20 0.34 0.26 -0.65
gpt-3.5-turbo 0.13 0.68 0.57 -3.94

Table 1. RawCalibrationMetrics with summaries produced by Retrieval Augmented Few-Shot Summarization.
“Success rate" indicates the fraction of output above similarity threshold. Arrows indicate direction of value
improvement (↑means higher is better, ↓ the reverse)

, Vol. 1, No. 1, Article . Publication date: December 2024.

Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores 13

(a) Code Llama 70b (b) GPT-3.5 Turbo

Fig. 4. Reliability Plots for models using Retrieval Augmented Few-Shot Summarization on Python methods.
The top plots show the frequency distribution of confidence values; the bottom is a reliability diagram.

5.2 RQ2: Platt Rescaled vs. Raw Calibration
We now study how calibration changes with rescaling. Table 2 and Figure 5 show significantly
improved calibration for every configuration of model and language. All skill scores are positive,
and both DeepSeek-Coder-33B and CodeLlama-70b exhibit very high skill scores (0.11) for Java and
Python respectively. The Brier scores now range from 0.11 to 0.17 and the ECE ranges from 0.01
to 0.03, indicating good calibration. Although the skill score for GPT-3.5-Turbo is improved after
rescaling, it is much lower than the other models. To summarize, the raw average token probability
is not well-calibrated, but the rescaled average token probability is well-calibrated – with respect
to thresholded BERTScore.

Language Model Success Rate ECE (↓) Brier (↓) Skill score (↑)
Java CodeLlama-70b 0.26 0.03 0.17 0.10

deepseek-coder-33b-instruct 0.23 0.02 0.16 0.11
gpt-3.5-turbo 0.19 0.03 0.15 0.05

Python CodeLlama-70b 0.23 0.01 0.16 0.11
deepseek-coder-33b-instruct 0.20 0.01 0.15 0.08
gpt-3.5-turbo 0.13 0.01 0.11 0.03

Table 2. Platt Rescaled Calibration using Retrieval Augmented Few-Shot Summarization on Java methods

Language Model Success Rate ECE (↓) Brier (↓) Skill score (↑)
Java CodeLlama-70b 0.28 0.02 0.19 0.08

deepseek-coder-33b-instruct 0.24 0.02 0.16 0.11
gpt-3.5-turbo 0.24 0.04 0.17 0.06

Python CodeLlama-70b 0.26 0.02 0.16 0.19
deepseek-coder-33b-instruct 0.23 0.02 0.16 0.11
gpt-3.5-turbo 0.14 0.01 0.12 0.01

Table 3. Platt Rescaled Calibration using Automatic Semantic Augmentation + Retrieval Augmented Few-Shot
for summarization of Java methods

Calibration changes with ASAP. Table 3 presents the results comparing calibration applying
ASAP. We observe that, augmented with static analysis products, every model achieves a higher
success rate for both Python and Java. For Java, the skill score decreases with ASAP, whereas
for Python, the skill score increases for CodeLlama-70B and deepseek-coder-33b-instruct. It’s

, Vol. 1, No. 1, Article . Publication date: December 2024.

14 Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed

(a) Code Llama 70b (b) GPT-3.5 Turbo

Fig. 5. Rescaled Reliability Plots for models using Retrieval Augmented Few-Shot for summarization of
Python Methods. Compared to Fig. 4, the rescaled blue bars are closer to the diagonal, and the distribution of
confidence values changes (top plots) as they are scaled.

Success Rate ECE (↓) Brier (↓) Skill score (↑)
Threshold Type High P High R High P High R High P High R High P High R

Language Model

Java CodeLlama-70b 0.06 0.25 0.00 0.02 0.04 0.17 0.22 0.08
deepseek-coder-33b-instruct 0.04 0.22 0.01 0.01 0.02 0.15 0.35 0.12
gpt-3.5-turbo 0.02 0.20 0.01 0.05 0.02 0.15 0.02 0.08

Python CodeLlama-70b 0.05 0.24 0.01 0.02 0.04 0.15 0.27 0.18
deepseek-coder-33b-instruct 0.01 0.20 0.02 0.01 0.02 0.14 0.28 0.10
gpt-3.5-turbo 0.00 0.10 0.00 0.00 0.00 0.10 -0.00 0.01

Table 4. Calibration under high precision and recall thresholds. Results are Platt Rescaled and summaries are
generated using Automatic Semantic Augmentation + Retrieval Augmented Few-Shot for summarization.

noteworthy that Java is a strictly typed and verbose language; the additional information provided
by ASAP in the prompts may be redundant, and distort the model’s confidence. However, for
Python, ASAP may provide necessary information that might be missing in the function body itself
(e.g., variable type). Incorporating this information may be helping improve both success rate and
calibration. Hence, the trade-off exists, at least for Java, where transitioning from BM25 to ASAP
yields better performance but worst calibration.

Calibration effects of thresholding So far, we have evaluated calibration with respect to a
threshold and metric which offers a balance between very strict and lenient classifications (which
has the optimal F1-score). How about calibration with respect to a high precision and high recall
measures of correctness? Table 4 presents calibration results for thresholded metrics with high
precision and recall respectively.

As expected, when using a high precision correctness measure (BERTScore thresholded at 0.89),
the model’s success rate is very low – virtually 0 for GPT-3.5-Turbo summaries of Python methods.
For both Python and Java, every model except GPT-3.5-Turbo has excellent calibration with skill
scores over 0.2. Since a lower success rate may produce a higher skill score (see 2), this high skill is
partly due to the very low success rate; however, in addition to correctly producing low confidence
for the many incorrect summaries, the Platt rescaler also learns to appropriately produce higher
confidence for the few correct ones, thus resulting in higher skill.

, Vol. 1, No. 1, Article . Publication date: December 2024.

Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores 15

When using a high recall correctness measure (SentenceBERT thresholded at 0.80), the success
rate is significantly higher. We find similar calibration results to Table 3. Besides GPT-3.5-Turbo
on Python methods, skill scores are over 0.08, indicating good calibration. Thus, even though
more summaries are accepted as being above the threshold, the model’s output confidence (after
rescaling) provides a usable indication as to whether the summary might adequately resemble a
human-produced summary.
Thus, we find the choice of threshold has a substantial effect on calibration, and so their usage

should be managed with care.

5.3 RQ3: Effect of Token Position on Confidence
We now present results on the relationship between token position and model confidence and its
effect on calibration. Figure 6 shows that, as the position of a token in a code summary increases,
the model’s confidence in the token also tends to increase. For Java summaries generated by
Code-Llama-70b using retrieval-augmented few-shot prompting, after 20 tokens, the median token
probability plateaus to over 0.9. Similar trends (where tokens late in the sequence exhibit high
probabilities) are seen for every configuration of model, programming language, and prompting
method. However, for some cases, this relationship is exhibited to a lesser extent. For example, in
Python Summaries using GPT-3.5-Turbo, the median confidence computed with the first 5 tokens is
already over 0.8. Although later tokens still tend to have even higher probabilities, since the mean
probability over a sequence is already very large, their effect of excluding them isn’t so substantial.
Figure 7 shows the skill score achieved when only including the first 𝑡 tokens in the geometric

mean. In figure 7a, all first 7 tokens carry significant signal. However, including any more tokens
reduces skill score since their probabilities are very large, smoothing the total mean towards high
values which are not representative of uncertainty in the summary. In figure 7b, only including
early tokens in the geometric mean has little effect, primarily due to CodeLlama-70b generating
short code summaries for Python. Since the proportion of generated code summaries with over
15 tokens is <10, only using the first e.g. 15 tokens has a diluted effect on skill score (which is
measured across all summaries).

Fig. 6. Distribution of token probabilities by its position in a generated summary. The y-axis shows the mean
probability at a token position across all sequences. Summaries are of Java methods by CodeLlama-70b using
Retrieval-Augmented Few-Shot prompting.

Following Section 4.7, we find a statistically significant (𝛼 = 0.01) reduction in the Brier Scores
(after Benjamini-Hochberg correction) for some but not all configurations of model, programming
language, and prompting method. For Python summaries, we only find statistically significant reduc-
tions for CodeLlama-70b and DeepSeek-Coder-33b with few-shot prompting. For Java summaries,

, Vol. 1, No. 1, Article . Publication date: December 2024.

16 Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed

(a) GPT-3.5 Turbo on Java methods
using retrieval-augmented prompting.
Summarization Success Rate: 0.19

(b) CodeLlama-70b on Python
methods using Automatic Semantic
Augmentation. Summarization Success
Rate: 0.26

Fig. 7. The bottom plots show the skill score achieved, after platt scaling, when taking the arithmetic mean of
the first t tokens. The top plots show the frequency distribution of generated code summary lengths. In (b),
since there are very few generated summaries longer than 20 tokens, only using early tokens when computing
confidences has little overall effect on Skill Score.

we find significant reductions for all models and prompting methods except DeepSeek-Coder-33b
prompted with few-shot prompting.

Why is there a significant reduction in Brier Score in some cases and not others? Some configura-
tions generate shorter summaries e.g. Figure 7b. We find that code summaries generated for Python
methods tend to be shorter than code summaries for Java. Since high probabilities expressed in
later tokens aren’t as prevalent in shorter code summaries, they have a smaller effect on the mean
confidence and thus calibration performance. Additionally, the selected hyperparameter 𝑡 might be
poor. Particularly, for Java summaries generated with CodeLlama-70b and ASAP prompting, 𝑡=4 is
chosen in some folds. By only using the first 4 tokens, significant information is lost. Finally, there
might not be a substantial enough difference between probabilities early and late in the summary,
such as for Python summaries generated by GPT-3.5-Turbo discussed at the start of 5.3.
In summary, our analysis suggests that the ideal practical configuration of prompting strat-

egy (ASAP and/or RAG) and token length (for confidence) depends on the setting, and could be
empirically selected.

6 DISCUSSION: THREATS & LIMITATIONS
6.1 Limitation: Summary Intent Capture
The notion of correctness in our work is based on similarity to human-produced summaries.
However, human developers have different intents (how/what/why) when writing summaries [Geng
et al. 2024; Hu et al. 2022]. These different intents are not captured by the similarity metrics. A
reliable way of integrating intent into summary evaluation metrics remains for future work.

That said, it is important to note that prior work indicates that human-produced summaries are
inherently valuable [Stapleton et al. 2020] and that the measure we used is an excellent proxy of
human perceptions of similarity to human summaries [Haque et al. 2022; Mastropaolo et al. 2024].

, Vol. 1, No. 1, Article . Publication date: December 2024.

Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores 17

6.2 Limitation: Experimental Design
In this paper, we primarily experimented with two programming languages, two prompting tech-
niques, three models, and primarily with one similarity metric. Our findings in this paper are
limited to these components. Prompting techniques can vary greatly, and the findings may differ
significantly based on the prompting technique, as well as the programming language and metric
used. Addressing all the languages, models, and prompting techniques is beyond the scope of this
paper. However, Java and Python are two very different programming languages, and the models
we used exhibit diversity in size and training. We believe that our findings will be well-generalized
beyond these languages, models, and other parameters.

6.3 Limitation: Platt scaling
Platt scaling is a popular and widely used rescaling strategy. However, another very popular
rescaling technique is temperature scaling, which is found to be better than Platt scaling in certain
scenarios. In this paper, we could not use temperature scaling because it requires access to complete
softmax layers, which are unavailable from the OpenAI2 and TogetherAI3 APIs. In the future, we
hope to incorporate temperature scaling into our experiments when we have access to the complete
softmax layer.

6.4 Self-Reflection Calibration
By “reflective" we mean the ability of an instruction-tuned model to evaluate its own output. We
used two reflective measures to compute model confidence. One is logit-based, and the other one is
verbalized. In the logit-based measure, we present the model with the code and model-generated
summary, and ask the model to rate the quality of the summary by generating a true/false output
(we used similar prompts to those proposed by Spiess et al. [Spiess et al. 2025]). We review the top
five tokens, by their probabilities, and select the probability associated with the “True” token. For
the verbalized measure, we tried both zero-shot and few-shot learning approaches and asked the
model to assign a score from 1 to 4 based on similarity, following the approach used by Haque
et al. [Haque et al. 2022]’s tool for human validation. In regards to the reflective logit, when we
prompt the model to generate true/false responses, CodeLlama-70b produced invalid responses on
extensive prompt variations since it is not instruction-tuned. Additionally, we are interested in the
logit associated with the token “True". If the model does not generate “True", it is impossible to
retrieve the “True" logit unless we have access to the top-k log-probability tokens and “True" is one
of them. Among our models, we only have this access for GPT-3.5-Turbo due to API limitations.
Consequently, we only evaluated reflective logits on the GPT-3.5-Turbo model. However, the model
was highly over-confident with 94% of its confidences over 0.9, achieving a negative skill score.
Rescaling transformed all the logits to near the unskilled, base rate.
We also attempted zero-shot and few-shot verbalized confidence measures by prompting the

model to assign either 1, 2, 3, or 4 to score the similarity between the reference and the generated
output. This design choice is inspired by human evaluations by Haque et al. [Haque et al. 2022].
In this setup, CodeLlama-70b failed to generate any score, but in the few-shot learning scenario,
CodeLlama-70b is able to generate scores. During few-shot learning, the shots were taken from
the dataset proposed by Haque et al. For both zero-shot and few-shot (4 shots) settings, we found
that the models were not well-calibrated. Note that we tried a higher temperature and generated
multiple samples. Majority voting from multiple samples did not change the calibration outcome.

2https://openai.com
3https://www.together.ai

, Vol. 1, No. 1, Article . Publication date: December 2024.

18 Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed

Therefore, we can conclude that the models are not well-calibrated for any of the self-reflective
measures studied.

7 RELATEDWORK
LLMs are widely used in many software engineering tasks [Fan et al. 2023; Hou et al. 2023], including
code summarization [Ahmed and Devanbu 2022a; Ahmed et al. 2024]. Though LLMs are drawing
attention from the community, it is well-known that they generate more buggy text/code than
fixed text/code [Jesse et al. 2023]. Consequently, the reliability of the model-generated output
remains very low. To address this reliability issue, researchers have started looking into calibration
in Software Engineering [Zhang et al. 2023; Zhou et al. 2024].

Calibration is a well-studied domain in NLP [Guo et al. 2017], primarily for classification problems
where model log-probabilities are used as a measure of model confidence. Considerable work in the
generative setting has also been done in NLP [Malinin and Gales 2021], [Kuhn et al. 2023], [Ott et al.
2018], [Wang et al. 2020]. Though calibration is also being studied in the SE community [Spiess
et al. 2025; Zhang et al. 2023; Zhou et al. 2024], to the best of our knowledge, there is no study
on calibration for generative models for code summarization. Compared to existing work in NLP,
the notion of "correctness" for code summaries is distinct and multi-faceted, as discussed in 2.3.
Compared to work in program repair or synthesis, measures of correctness for code summaries are
continuous. To address these aspects, we explored thresholding similarity measures. Our results
regarding the effect of programming language choice, and using static analysis products in prompt,
on calibration for code summaries, are also SE-specific. Finally, to our knowledge, the observation
that uncertainty is better represented by earlier tokens than later ones is a novel contribution in a
SE context.
SIDE is another reference-free evaluation metric for code summaries, aiming to measure a

summary’s content adequacy [Mastropaolo et al. 2024]. However, as Mastorpaolo et al. discuss, it is
limited in capturing content adequacy e.g. giving high scores to relevant but generic summaries,
and should be viewed as complementary to similarity metrics. Our method accurately captures
our measure of correctness as shown, yet also has limitations arising from using similarity as the
metric. As discussed, in section 2.3, both SIDE and a calibrated confidence score can be presented
to the user since they can indicate different aspects of summary quality.

In SE, LLMs are increasingly popular, but questions about reliability persist. We anticipate more
studies on calibration for different problems in the near future to enhance the reliability of model
output.

8 CONCLUSION
Code summaries are valuable to maintainers, and LLMs can generate good summaries from code.
However, LLM-generated summary quality is very variable: sometimes similar to human-written
summaries, and sometimes not. This indicates a need for developers to know when a summary
might be sufficiently similar to a human-written summary. This is a calibration problem: can the
model provide a reliable indication of its confidence that a generated summary is “good enough"?
We address this problem by selecting a metric known from the literature to be a good proxy for
similarity to human-produced summaries, and then thresholding this metric to get an indication of
sufficient similarity. We then evaluate the calibration of a range of prompting approaches, together
with Platt scaling. We find that in some cases, the first few tokens may provide the best calibration;
we also find both retrieval-augmented few-shot prompting and ASAP can be advantageous. We also
find that reflection-based approaches do not provide better calibration. To our knowledge, we are
the first to evaluate whether LLM-based approaches to code summarization are well calibrated; our
work contributes both a methodology, and several useful approaches, to this important question.

, Vol. 1, No. 1, Article . Publication date: December 2024.

Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores 19

9 DATA AVAILABILITY
Our code and dataset are made available at 10.5281/zenodo.10858303.

REFERENCES
2024. Wetter Und Klima - Deutscher Wetterdienst - Our Services - Skill Measure: Brier Skill Score. Retrieved 2024 from

https://www.dwd.de/EN/ourservices/seasonals_forecasts/forecast_reliability.html
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified pre-training for program

understanding and generation. arXiv preprint arXiv:2103.06333 (2021).
Toufique Ahmed and Premkumar Devanbu. 2022a. Few-shot training LLMs for project-specific code-summarization. In

Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. 1–5.
Toufique Ahmed and Premkumar Devanbu. 2022b. Multilingual training for software engineering. In Proceedings of the 44th

International Conference on Software Engineering. 1443–1455.
Toufique Ahmed, Kunal Suresh Pai, Premkumar Devanbu, and Earl Barr. 2024. Automatic semantic augmentation of

language model prompts (for code summarization). In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 1–13.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with
human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation
and/or summarization. 65–72.

Glenn W Brier. 1950. Verification of forecasts expressed in terms of probability. Monthly weather review 78, 1 (1950), 1–3.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav

Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural information
processing systems 33 (2020), 1877–1901.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M Zhang. 2023. Large
language models for software engineering: Survey and open problems. arXiv preprint arXiv:2310.03533 (2023).

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin
Jiang, et al. 2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020. 1536–1547.

Mingyang Geng, ShangwenWang, Dezun Dong, HaotianWang, Ge Li, Zhi Jin, XiaoguangMao, and Xiangke Liao. 2024. Large
language models are few-shot summarizers: Multi-intent comment generation via in-context learning. In Proceedings of
the 46th IEEE/ACM International Conference on Software Engineering. 1–13.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration of modern neural networks. In International
conference on machine learning. PMLR, 1321–1330.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y Wu, YK Li, et al. 2024.
DeepSeek-Coder: When the Large Language Model Meets Programming–The Rise of Code Intelligence. arXiv preprint
arXiv:2401.14196 (2024).

Sakib Haque, Zachary Eberhart, Aakash Bansal, and Collin McMillan. 2022. Semantic similarity metrics for evaluating
source code summarization. In Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension.
36–47.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John Grundy, and Haoyu Wang.
2023. Large language models for software engineering: A systematic literature review. arXiv preprint arXiv:2308.10620
(2023).

Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas Zimmermann. 2022. Practitioners’ expectations
on automated code comment generation. In Proceedings of the 44th International Conference on Software Engineering.
1693–1705.

Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming Zhao, Huaming Chen, Felix Juefei-Xu, and Lei Ma. 2023. Look Before
You Leap: An Exploratory Study of Uncertainty Measurement for Large Language Models. arXiv:2307.10236 [cs.SE]

Kevin Jesse, Toufique Ahmed, Premkumar T Devanbu, and Emily Morgan. 2023. Large language models and simple, stupid
bugs. In 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR). IEEE, 563–575.

Daniel D. Johnson, Daniel Tarlow, and ChristianWalder. 2023. R-U-SURE? uncertainty-aware code suggestions bymaximizing
utility across random user intents. In Proceedings of the 40th International Conference on Machine Learning (Honolulu,
Hawaii, USA) (ICML’23). JMLR.org, Article 623, 45 pages.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023. Semantic Uncertainty: Linguistic Invariances for Uncertainty
Estimation in Natural Language Generation. In The Eleventh International Conference on Learning Representations.
https://openreview.net/forum?id=VD-AYtP0dve

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out. 74–81.

, Vol. 1, No. 1, Article . Publication date: December 2024.

https://zenodo.org/doi/10.5281/zenodo.10858303
https://www.dwd.de/EN/ourservices/seasonals_forecasts/forecast_reliability.html
https://arxiv.org/abs/2307.10236
https://openreview.net/forum?id=VD-AYtP0dve

20 Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin
Jiang, Duyu Tang, et al. 2021. Codexglue: A machine learning benchmark dataset for code understanding and generation.
arXiv preprint arXiv:2102.04664 (2021).

Andrey Malinin and Mark Gales. 2021. Uncertainty Estimation in Autoregressive Structured Prediction. In International
Conference on Learning Representations. https://openreview.net/forum?id=jN5y-zb5Q7m

Antonio Mastropaolo, Matteo Ciniselli, Massimiliano Di Penta, and Gabriele Bavota. 2024. Evaluating Code Summarization
Techniques: A New Metric and an Empirical Characterization. (2024).

Paul W McBurney and Collin McMillan. 2015. Automatic source code summarization of context for java methods. IEEE
Transactions on Software Engineering 42, 2 (2015), 103–119.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. 2015. Obtaining well calibrated probabilities using
bayesian binning. In Proceedings of the AAAI conference on artificial intelligence, Vol. 29.

Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023. Retrieval-based prompt selection for code-related few-shot learning. In
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2450–2462.

Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. 2018. Analyzing Uncertainty in Neural Machine
Translation. CoRR abs/1803.00047 (2018). arXiv:1803.00047 http://arxiv.org/abs/1803.00047

R.L. Ott and M.T. Longnecker. 2015. An Introduction to Statistical Methods and Data Analysis. Cengage Learning.
Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi, Michele Merler, Boris Sobolev,

Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. 2024. Lost in translation: A study of bugs introduced by large
language models while translating code. In 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE).
IEEE Computer Society, 866–866.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics. 311–318.

John Platt et al. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.
Advances in large margin classifiers 10, 3 (1999), 61–74.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance framework: BM25 and beyond. Foundations and
Trends® in Information Retrieval 3, 4 (2009), 333–389.

Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. 2021. Reassessing automatic evaluation metrics for code summariza-
tion tasks. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1105–1116.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez,
Jérémy Rapin, et al. 2023. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu Zhang, Dongmei Zhang, and Hongbin Sun. 2022. On
the evaluation of neural code summarization. In Proceedings of the 44th international conference on software engineering.
1597–1608.

Claudio Spiess, David Gros, Kunal Suresh Pai, Michael Pradel, Md Rafiqul Islam Rabin, Amin Alipour, Susmit Jha, Prem
Devanbu, and Toufique Ahmed. 2025. Calibration and correctness of language models for code. In Proceedings, ICSE 2025
(to appear).

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-Shanker. 2010. Towards automatically
generating summary comments for java methods. In Proceedings of the 25th IEEE/ACM international conference on
Automated software engineering. 43–52.

Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eberhart, Westley Weimer, Kevin Leach, and Yu Huang.
2020. A human study of comprehension and code summarization. In Proceedings of the 28th International Conference on
Program Comprehension. 2–13.

Florian Tambon, Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh, Michel C Desmarais, and Giuliano Antoniol.
2024. Bugs in Large Language Models Generated Code. arXiv preprint arXiv:2403.08937 (2024).

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod
Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. 2023.
scipy.stats.false_discovery_control. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.false_discovery_
control.html.

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu. 2020. On the Inference Calibration of Neural Machine Translation. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics, Online, 3070–3079. https://doi.org/10.
18653/v1/2020.acl-main.278

, Vol. 1, No. 1, Article . Publication date: December 2024.

https://openreview.net/forum?id=jN5y-zb5Q7m
https://arxiv.org/abs/1803.00047
http://arxiv.org/abs/1803.00047
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.false_discovery_control.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.false_discovery_control.html
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.278

Enhancing Trust in LLM-Generated Code Summaries with Calibrated Confidence Scores 21

YueWang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation. arXiv preprint arXiv:2109.00859 (2021).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-
thought prompting elicits reasoning in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

Jay Boice Wezerek, Gus. 2023. How Good Are FiveThirtyEight Forecasts? FiveThirtyEight. Retrieved 2024 from https:
//projects.fivethirtyeight.com/checking-our-work/

Daniel S. Wilks. 1990. On the Combination of Forecast Probabilities for Consecutive Precipitation Periods. In Weather and
Forecasting, Vol. 5. 640—-650.

Bianca Zadrozny and Charles Elkan. 2001. Obtaining calibrated probability estimates from decision trees and naive bayesian
classifiers. In Icml, Vol. 1. 609–616.

Bianca Zadrozny and Charles Elkan. 2002. Transforming classifier scores into accurate multiclass probability estimates. In
Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. 694–699.

Chunyan Zhang, Junchao Wang, Qinglei Zhou, Ting Xu, Ke Tang, Hairen Gui, and Fudong Liu. 2022. A survey of automatic
source code summarization. Symmetry 14, 3 (2022), 471.

Dylan Zhang, Xuchao Zhang, Chetan Bansal, Pedro Las-Casas, Rodrigo Fonseca, and Saravan Rajmohan. 2023. PACE:
Prompting and Augmentation for Calibrated Confidence Estimation with GPT-4 in Cloud Incident Root Cause Analysis.
arXiv preprint arXiv:2309.05833 (2023).

Zhenhao Zhou, Chaofeng Sha, and Xin Peng. 2024. On Calibration of Pre-trained Code Models. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE). IEEE Computer Society, 861–861.

Yuxiang Zhu and Minxue Pan. 2019. Automatic code summarization: A systematic literature review. arXiv preprint
arXiv:1909.04352 (2019).

, Vol. 1, No. 1, Article . Publication date: December 2024.

https://projects.fivethirtyeight.com/checking-our-work/
https://projects.fivethirtyeight.com/checking-our-work/

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Calibration: How to use unreliable outputs from flawed models
	2.2 Confidence in a generated summary
	2.3 Correctness of a generated summary

	3 Research Questions
	4 Methodology
	4.1 Models
	4.2 Prompting Methods for Code Summaries
	4.3 How to measure models' confidence in a token sequence? (RQ1)
	4.4 Evaluating similarity to human-produced summaries (RQ1)
	4.5 Experimental Dataset
	4.6 Rescaling (RQ2)
	4.7 Using the first tokens to compute confidences (RQ3)

	5 Results
	5.1 RQ1 Calibration: LLM Confidence vs. Summary Correctness
	5.2 RQ2: Platt Rescaled vs. Raw Calibration
	5.3 RQ3: Effect of Token Position on Confidence

	6 Discussion: Threats & Limitations
	6.1 Limitation: Summary Intent Capture
	6.2 Limitation: Experimental Design
	6.3 Limitation: Platt scaling
	6.4 Self-Reflection Calibration

	7 Related Work
	8 Conclusion
	9 Data Availability
	References

