
DyCodeEval: Dynamic Benchmarking of Reasoning Capabilities
in Code Large Language Models Under Data Contamination

Simin Chen 1 Pranav Pusarla 1 Baishakhi Ray 1

1Columbia University

Abstract
The rapid evolution of code largelanguage mod-
els (LLMs) underscores the need for effective and
transparent benchmarking of their reasoning ca-
pabilities. However, the current benchmarking
approach heavily depends on publicly available,
human-created datasets. The widespread use of
these fixed benchmark datasets makes the bench-
marking process to be static and thus particularly
susceptible to data contamination—an unavoid-
able consequence of the extensive data collection
processes used to train Code LLMs. Existing
approaches that address data contamination of-
ten suffer from human effort limitations and im-
balanced problem complexity. To tackle these
challenges, we propose DyCodeEval, a novel
benchmarking suite for evaluating Code LLMs
under potential data contamination. Given a seed
programming problem, DyCodeEval employs
multiple agents to extract and modify the con-
text without altering the core logic, generating
semantically equivalent variations. We introduce
a dynamic data generation methods and conduct
empirical studies on two seed datasets across 21
Code LLMs. Results show that DyCodeEval
effectively benchmarks reasoning capabilities un-
der contamination risks while generating diverse
problem sets to ensure consistent and reliable eval-
uations. Our project webpage can be found at this
link1.

1. Introduction
Large language models (LLMs) have demonstrated signifi-
cant potential as assistant software developers, particularly
in code generation (Chen et al., 2021; Guo et al., 2024;
Jiang et al., 2024; Di et al., 2024). Consequently, numerous
code-focused LLMs have been developed. These models

1https://codekaleidoscope.github.io/
dycodeeval.html

are trained on vast corpora of natural language and program-
ming language data. Once well-trained, they can compre-
hend human instructions and generate corresponding code
snippets.

As diverse model architectures and training algorithms
for code LLMs continue to emerge (Vaswani et al., 2017;
Shazeer et al., 2017), a key focus in code LLM research
is the effective benchmarking of each model’s code rea-
soning capability. For instance, each model is realeased
on HuggingFace every week. Without a standardized and
transparent benchmarking suite, assessing these models’ per-
formance and driving improvements becomes a significant
challenge.

However, existing benchmarking suites for evaluating code
LLMs are inadequate due to their static benchmarking
schema, which can lead to potential data contamination from
unintended data crawling. Research suggests that such con-
tamination may already be present in current LLMs (Brown
et al., 2020; Jain et al., 2024). Although some methods
aim to provide contamination-free benchmarking for code
LLMs, they still rely on manual efforts. For example,
LiveCodeBench (Jain et al., 2024) proposes crawling
new programming problems from online platforms and
benchmarking LLMs based on timestamps, while PPM
(Chen et al., 2024) attempts to systematize new program-
ming problems by combining manually defined operators.
However, these methods have several limitations: (1) Signif-
icant Manual Effort: These methods still require substantial
manual input to create such datasets. For example, PPM
necessitates manually defining the lambda operator, while
LiveCodeBench shifts the burden of manual design to
question authors on coding platforms. (2) Imbalanced Se-
mantic Complexity: The newly generated benchmarking
datasets often lack semantic equivalence with the origi-
nal ones. As a result, when a model performs worse on
these benchmarks, it is challenging to determine whether
the lower score reflects diminished model capabilities or in-
creased benchmark complexity. And thus, these new bench-
mark’s results fail to provide meaningful guidance for model
developers to improve their models effectively.

1

ar
X

iv
:2

50
3.

04
14

9v
1

 [
cs

.S
E

]
 6

 M
ar

 2
02

5

https://codekaleidoscope.github.io/dycodeeval.html
https://codekaleidoscope.github.io/dycodeeval.html

To address this limitation, rather than manually creating
benchmarking datasets with uncertain semantic complexity,
we aim to develop an automated method for dynamically
evaluating code LLMs. However, designing such a method
presents two key challenges: (1) Generating Semantically
Diverse Yet Complexity-Controlled Problems. The first chal-
lenge is that how to ensure the generated problems vary in
semantics while maintaining controlled complexity; and (2)
Providing Comprehensive Benchmarking. A proper bench-
mark programming problem must include fine-grained test
cases and canonical solutions to rigorously assess correct-
ness.

To address these challenges, we draw inspiration from meta-
morphic testing (Chen et al., 2018), a widely used approach
in software testing to tackle the oracle problem. In our
case, we leverage the principles of metamorphic testing
to automate comprehensive benchmarking. Specifically,
we define a metamorphic relationship for programming
problems. A programming problem includes complexity-
related algorithmic abstraction and complexity-unrelated
context description. Modifying the complexity-unrelated
context description alters the problem’s semantics with-
out changing its inherent complexity. Building on this
relationship, DyCodeEval employs LLM-based agents
to generate diverse contexts for a seed problem, automat-
ically transforming existing problems into semantically
varied yet complexity-preserving versions. Additionally,
DyCodeEval integrates a validation agent as a probabilis-
tic oracle to verify the correctness and consistency of the
newly generated problems, ensuring reliability.

We used DyCodeEval to generate new evaluation sets to
assess Code LLM performance under both data contami-
nation and real-world benchmarking scenarios. Our key
findings are as follows:

1. Our method effectively reflects Code LLMs’ reason-
ing capabilities in a manually crafted contamination
environment (§4.2).

2. The performance of Code LLMs on our dynamic bench-
marks degraded significantly, suggesting potential data
contamination (§4.3).

3. DyCodeEval generates semantically diverse pro-
gramming problems, and its inherent randomness
makes the likelihood of generating identical problems
extremely low, thereby reducing the risk of data con-
tamination (§4.4).

4. Despite its randomness, DyCodeEval consistently
produces stable benchmarking results, ensuring reli-
able evaluation (§4.5).

We summarize our contribution as follows:

• Novel Problem Characterization. We identify a limi-
tation in current static benchmarking schemas, as they
are insufficient for effectively evaluating modern Code
LLMs, especially when data contamination occurs and
the model’s training process lacks transparency.

• New Methodology Design. We propose a novel ap-
proach that separates context and algorithm in program-
ming problems. Building on this concept, we introduce
a dynamic benchmarking method, DyCodeEval,
which generates programming problems for bench-
marking without introducing additional complexity to
the dataset. This approach mitigates the impact of
data contamination, ensuring transparent and reliable
benchmarking.

• Empirical Findings. We conduct an empirical eval-
uation of DyCodeEval, and the results demonstrate
that traditional static benchmarks can create a false
sense of accuracy. In contrast, our dynamic bench-
marking approach provides consistently reliable re-
sults, even under data contamination scenarios. Ad-
ditionally, DyCodeEval generates semantically di-
verse programming problems while maintaining stable
benchmarking results.

2. Background & Related Work
2.1. Benchmarking LLMs

Numerous benchmarks have appeared in order to test the
effectiveness of LLMs (Hendrycks et al., 2021; Clark et al.,
2018; Cobbe et al., 2021). Many emphasize an understand-
ing of knowledge and language such as Glue (Wang et al.,
2019) and SciQ (Welbl et al., 2017). Others focus on rea-
soning capabilities e.g. DROP (Dua et al., 2019) and BBH
(Suzgun et al., 2022). And some focus on specific capabil-
ities such as coding (Chen et al., 2021). Fig. 1 shows an
example of a programming problem from a popular cod-
ing benchmark HumanEval, where a programming problem
usually includes three parts: prompt, canonical solution, and
test cases.

2.2. Data Contamination Free Benchmarking LLMs

Data contamination has become a prevalent issue in bench-
marking LLMs (Brown et al., 2020; Jain et al., 2024). Many
researchers have developed methods in hopes of mitigating
its effect. Given the public nature of benchmarks, one set
of approaches (Jacovi et al., 2023; Rajore et al., 2024) aims
to implement ideas such as encryption and privatization in
order to protect the data from training use. Other attempts to
solve this problem include DyVal (Zhu et al., 2024a) which
leverages the structure of DAGs to dynamically generate
evaluation sets, TreeEval (Li et al., 2024) which uses a high
performing LLM as an examiner utilizing a tree planning

2

Figure 1. Benchmark programming problem example

strategy, and ITD (Inference Time Decontamination) (Zhu
et al., 2024c) which detects and rewrites leaked samples
of benchmarks without changing its complexity. Unfortu-
nately, the limitation of these existing methods is the lack
of complexity equivalence with the original problem set.
Therefore, there is a need to devise a benchmark that main-
tains equivalence while providing contamination free data.

2.3. LLM as Judgement Agent

Recently, LLMs have become increasingly used as exam-
iners given their capabilities of analyzing large amounts of
data and providing unbiased assessments (Bai et al., 2023;
Fernandes et al., 2023). This growing trend has gained
interest for two reasons: (1) Enhanced generation of train-
ing/testing data (Li et al., 2024; Liu et al., 2024) (2) Accurate
evaluation and comparison of LLM outputs such as in Pan-
daLM (Wang et al., 2024) and DyVal (Zhu et al., 2024b).
Additionally, as LLMs have been able to perform remarkbly
well on unseen tasks, they offer a faster, equally accurate
alternative to human evaluation, (Chiang & yi Lee, 2023).

3. Methods: DyCodeEval
3.1. Design Overview

There are two key challenges in designing a dynamic evalu-
ation schema for benchmarking code LLMs. (1) Generating
Semantically Diverse yet Complexity-Controlled Problems:
There is currently no systematic method for generating pro-
gramming problems that maintain a consistent complexity
level while ensuring semantic diversity. Existing approaches
often rely on manual effort, either through predefined rules
or domain experts, making them difficult to scale efficiently
and incapable of precisely controlling problem complexity.
(2) Ensuring Comprehensive Benchmarking: To effectively
evaluate code LLMs, the generated programming problems
must include fine-grained test cases and canonical solutions
to rigorously assess correctness.

We draw inspiration from metamorphic testing to generate
programming problems using LLMs as agents. Metamor-
phic testing, widely used in software engineering, defines
relationships to address the automatic oracle problem. In our

approach, a programming problem prompt consists of two
components: complexity-related algorithmic abstraction
and complexity-unrelated context description. Our key meta-
morphic relationship states that modifying the complexity-
unrelated context description preserves both the problem’s
canonical solutions and complexity, enabling controlled
problem generation. Additionally, since LLMs are trained
on a vast diverse corpus, we can utilize them as agents
to suggest relevant and meaningful complexity-unrelated
context descriptions, further enhancing problem diversity.

The design overview of DyCodeEval is shown in Fig. 2.
Given a seed programming problem from existing bench-
marks, DyCodeEval generates a semantically different
yet complexity-equivalent problem using a metamorphic
relationship. DyCodeEval comprises four agents: (1) Sce-
nario Proposer, (2) Context Generator, (3) Prompt Rewriter,
and (4) Validator. The Scenario Proposer suggests real-
world domains (e.g., banking, healthcare, education), from
which DyCodeEval randomly selects one. The Context
Generator then analyzes input types in the canonical solution
and assigns a relevant context for each input variable based
on the selected scenario. The Prompt Rewriter reformulates
the problem to align with the input variable contexts and
chosen scenario. Finally, the Validator ensures the new prob-
lem remains consistent with the original. If inconsistencies
are detected, DyCodeEval will repeat the aforementioned
process until a valid variant is produced.

3.2. Detailed Design

Scenario Proposer Agent. The Scenario Proposer enhances
diversity and minimizes repetition in generated program-
ming problems, reducing potential data contamination. It
first selects scenarios from a predefined pool (e.g., banking,
healthcare, education, transportation, social networking)
and uses them as examples to prompt an LLM for new sce-
nario suggestions. The newly generated scenarios are then
added to the pool. By iteratively updating the pool and
querying the LLM with varied examples, DyCodeEval
continuously expands the scenario diversity until the sce-
nario pool reaches a pre-defined size, ensuring the generated
scenarios remain diverse and practical. The prompt used for
querying the LLM and the suggested scenario examples are

3

Scenario Proposer Context Generator Prompt Rewriter Validator

Education
Healthcare
Bank

Scenario Pool

Transportation

New Scenario

Canonical
Solution Random

Scenario

Bank
def close(threshold,
numbers):

.

…
Type
Inference

List[int] Float

Contexts

Threshold: predefined risk…..

Numbers: a list of operation
….

Bank

Contexts

Scenario

New Problem

Orig Problem

LLM Agent
as Verifier

Check if in given list of
numbers, are any two
numbers closer to each
other than given
threshold

Check if in given list of
numbers, are any two
numbers closer to each other
than given threshold

In a student performance dataset, determine if any
two students have performance scores that are
closer to each other than the specified threshold,
which could indicate similar academic capabilities
or learning patterns…….

In a student performance
dataset, determine if any
two students have
performance scores that
are closer to each other
than the specified
threshold…

Threshold: ……

Numbers: …….

Orig Problem New Problem

Figure 2. Design overview of DyCodeEval

Algorithm 1 Type Inference Algorithm. Abstract (·)
Input: Value list V .
Output: Set of data types τ⃗ .

1: τ⃗ = { } // Initialization.
2: for each v in V do
3: τ = Type(v)
4: if τ ∈ Basic Types then
5: τ⃗ = τ⃗ .add(Type(v))
6: else
7: τ∗ = Abstract(ToList(v))
8: τ⃗ .add(τ [τ∗]) // Composite type.
9: end if

10: end for
11: return τ⃗

listed in Appendix C.

Context Generation Agent. After proposing a set of sce-
narios, the context generation agent randomly selects one
from the pool and assigns context information to each input
variable of the programming problem based on the chosen
scenario.

In languages like Python, input types are not explicitly de-
fined. To address this, the agent uses abstraction for type
inference. It analyzes ASSERT statements in test cases, col-
lects concrete input values from the canonical solution, and
abstracts the input type based on these values. Our type
inference algorithm, shown in Alg. 1, works as follows: for
each concrete value, it first checks if the type is a basic type
(e.g., int, float). If so, it updates the type set. Otherwise
the value is a composite type so it recursively iterates over
all the elements and updates the type set with types like
List[int] or Tuple[int | string]. Notice that
while our abstract-based type inference may not capture
all return value types, it is sound and guarantees that the
collected types will always appear in the canonical solution.

After collecting the input data types, the agent prompts the
LLM with the scenario and input type information, asking it
to assign meaningful context to each input variable based on
the given scenario. See Appendix C for prompt templates
of our context generation.

Prompt Rewriting Agent. With the scenario and context
information for each input variable, the prompt rewriting
agent then rewrites the seed programming problem prompt
to be tailored to the scenario with meaningful context. Note
that we did not ask the LLM to generate the new prompt
from scratch. Instead, we provided the detailed scenario and
asked it to perform a rewriting task, which is simpler than a
generation task. With this approach, leveraging detailed con-
text and a more straightforward task, our agent can generate
semantically diverse programming problem prompts. See
Appendix C for prompt templates of our prompt rewriting.

Validation Agent. Although we provide the LLM with de-
tailed scenario and context information for rewriting, there
are cases where the rewriting agent unintentionally alters
the consistency. To address this, we design a validation
agent to assess whether the generated question maintains
the integrity of the original intent and informational con-
tent. The validation prompt is designed from two angles:
(1) it directs the LLM to compare the seed programming
problem prompt with the rephrased prompt, ensuring the
preservation of the core concept and factual accuracy, and
(2) it asks the LLM to check whether the seed canonical
solutions align with the generated programming problem
prompt. Specifically, we design two comparison prompts to
query the LLM and retain only those rewritten prompts for
which both comparison responses are ”YES”.

To ensure the consistency of the generated programming
problems, we also include a human verification step. The
details of our validation prompt and the human verification
process are presented in Appendix C and Appendix D.

Fig. 3 illustrates an example of programming problems that

4

Seed Problem: You will be given a string of words separated by commas or
spaces. Your task is to split the string into words and return an array of the words

Generated Problem: As a content recommendation system developer, you
need to process user-generated social media posts to identify relevant keywords
for suggesting connections and events. Given a user's post containing words
separated by commas or spaces, create a function that breaks down the text into
individual words for analysis. The function should handle both comma-separated
and space-separated text formats while preserving each distinct word for the
recommendation algorithm to process.

Recommendation system
Input: S [string]

User’s Blog

Figure 3. A generated example from DyCodeEval

are semantically diverse yet complexity-equivalent, gener-
ated under the scenario of a recommendation system with
the context of a user’s blog. From this example, we observe
that our step-by-step guided approach significantly enhances
the semantic diversity of the generated problems, while also
reducing the risk of data contamination. This is achieved
by leveraging the vast combination space of scenarios and
contexts.

3.3. Theoretical Collision Analysis

DyCodeEval generates programming problems dynami-
cally with randomness, reducing the risk of potential data
contamination. To analyze this, we conduct a collision anal-
ysis. The randomness in DyCodeEval arises from both
the scenario proposal and context generation phases. We
assume the scenario proposer generates ||S|| scenarios, and
for each scenario, the context generation produces ||C|| con-
texts, while ignoring randomness in the rewriting phase.
Based on this, we present the following theorem.

Theorem 3.1. After running DyCodeEvalM + 1 times
on the same seed problem, Then the probability that the
M samples after the first one are all different from the first
sampled item satisfies: P ≥ 1− exp

(
− M

||S||×||C||−1

)
.

Theorem 3.2. After running DyCodeEvalM times on the
same seed problem, If M << S|| × ||C||, the probability of
at least one collision (i.e., two or more generated problems
being the same) after M generations satisfies the following
bound: P ≤ 1− exp

(
− M2−M

2||S||×||C||

)
.

Theorem 3.3. Consider the seed dataset of size D, After
running DyCodeEval M + 1 times on this dataset, If
M << S|| × ||C||, Then the probability that the M gener-
ated dataset after the first one are all not the same as the

first generated dataset satisfies: 1− e
− M

(||S||×||C||)D−1 ≤ P

The proof could be found in Appendix A

4. Evaluation
4.1. Experimental Setup

Seed Dataset. We conduct our evaluation using two
datasets: HumanEval (Chen et al., 2021) and MBPP-
Sanitized (Austin et al., 2021). Both datasets are widely
utilized in existing research and serve as standard bench-
marks for evaluating code generation models. More details
about the dataset could be found in Appendix B.

Implementation Details. We use CLAUDE-3.5-SONNET as
our foundation model to generate the benchmarking dataset.
Specifically, we create 50 scenarios, and for each scenario,
we randomly generate 50 contexts. During dataset gen-
eration, we set the LLM temperature to 0.8, while in our
validation agent, we use a temperature of 0. For each code
LLM under benchmarking, we employ vLLM to launch the
model. For closed-source code LLMs, we query the com-
mercial API for evaluation.

4.2. Benchmarking Contaminated Model

Models. We conduct our study with three public-available
Code LLMs: LLAMA-3.2-1B, LLAMA-3.2-3B, and
DEEPSEEK-CODER-1.3B. The selected code generation
models are diverse in terms of model architecture, model
size, and training methods.

Model Contamination Process. For each model, we simu-
late data contamination by intentionally leaking a portion
of the benchmarking dataset during fine-tuning. (1) For the
static benchmarking method, we directly include part of the
benchmarking dataset in fine-tuning. (2) For our method, we
run it twice on each seed dataset to generate two versions of
new programming problems, one for training and the other
for benchmarking. We experiment with leaked data percent-
ages of 0%, 25%, 50%, 75%, and 100%, producing four
distinct contaminated models. Each polluted model is then
evaluated on the benchmarking dataset using the Pass@1
metric. The formal definition of Pass@1 is shown in (1),
where n is the number of the generated solution candidate,
and c is the number of the correct solutions that can pass all
test cases.

Pass@K = EProblems

[
1−

(
n−c
k

)(
n
k

)]
(1)

Main Results. The study results are presented in Fig. 4,
where there are two rows and three columns. Each column
represents evaluation on a different LLM while the rows
show static (first) vs dynamic (second) benchmarking. In
each column, the left section displays the results for the
model fine-tuned on the HumanEval dataset, while the right
section shows the results for the model fine-tuned on the
MBPP dataset. The red bars represent the performance

5

Figure 4. Results of benchmarking on contaminated models

of the fine-tuned model benchmarked on the HumanEval
dataset, and the blue bars represent its performance bench-
marked on the MBPP dataset.

From the results, we make the following observations: (1).
Data contamination creates a false sense of code reasoning
capability under static benchmarks. When the benchmark-
ing dataset is leaked and used for fine-tuning, the model
achieves a higher Pass@1 score on the corresponding
benchmark. However, this improvement does not accurately
reflect the model’s true reasoning ability, as its performance
declines on other benchmarks that were not included in
fine-tuning. (2). Our dynamic benchmarking mitigates the
impact of data contamination. Different from static bench-
marks, our approach prevents contaminated models from
achieving artificially high Pass@1 scores after fine-tuning.
This is due to the randomness in our method, which ensures
minimal or no overlap between different runs, reducing the
risk of direct data leakage. (3). Our dynamic benchmarking
dataset provides results comparable to manually curated,
non-contaminated datasets. In static benchmarking, as the
percentage of leaked data increases, the model’s Pass@1
score on the contaminated benchmark steadily improves.
However, its performance on other benchmarks remains rel-
atively stable, showing little variation across different con-
tamination levels. Interestingly, this stability also applies to
our method. If the base model is not contaminated on the
selected seed dataset, this suggests that our approach pro-
vides competitive benchmarking results similar to those of
human-curated datasets. (4). A notable anomaly is observed
in DEEPSEEK-CODER. When only 25% of the benchmark-
ing dataset is used for fine-tuning, the model’s Pass@1
score drops below that of the original, unmodified model.

We hypothesize that the model may already be overfitted to
the contaminated dataset, and further fine-tuning with lim-
ited data could destabilize this overfitting without providing
enough new information to help the model adapt.

4.3. Benchmarking On-the-wild Model

We then apply DyCodeEval to benchmark more on-
the-wild code LLMs, besides the model used in §4.2.
We consider the following code LLMs: LLAMA-3.1-
8B, CODELLAMA-7B, CODELLAMA-13B, DEEPSEEK-
V2-LITE, DEEPSEEK-CODER-V2-LITE-BASE, LLAMA-
3.1-8B-INSTRUCT, QWEN2.5-CODER-7B, QWEN2.5-7B-
INSTRUCT, QWEN2.5-7B, CLAUDE-3.5-HAIKU, CLAUDE-
3.5-SONNET,QWEN2.5-CODER-7B-INSTRUCT .

The results are presented in Fig. 5, with the left figure show-
ing the results on HumanEval and the right showing the
results on MBPP. In each figure, the x-axis represents the
Pass@1 scores on our generated dataset, and the y-axis
represents the Pass@1 scores on the seed dataset. The
blue region corresponds to the regression area of the on-the-
wild model, the red region represents the regression area
of the overfitted model on this dataset, and the orange area
indicates the overfitted model on the other dataset.

From these results, we observe that for both seed datasets,
the on-the-wild model’s Pass@1 scores maintain a linear
relationship, while the overfitted model appears as an outlier.
A notable finding from our on-the-wild evaluation is that the
model QWEN2.5-CODER-7B consistently falls outside the
95% confidence interval of the regression area, suggesting
it may be contaminated on both datasets.

6

Figure 5. The on-the-wild benchmarking results

4.4. Programming Problem Diversity

To evaluate the diversity of the generated programming
problems, we conduct two experiments: one for external
diversity and one for internal diversity. External diversity
quantifies the dissimilarity between the generated and seed
problems, while internal diversity measures the diversity
within each problem-generation method across trials. We
use two metrics: BLEU-4 to measure syntactical diversity
and cosine similarity of the prompt’s semantic embedding
to measure semantic diversity. For semantic embedding,
we use the GPT-2 model to obtain the embedding of each
natural language prompt. Moreover, we also consider PPM
(Chen et al., 2024) and a series of robustness-based muta-
tion (Wang et al., 2023), such as token replacement, insert
blank lines, as our comparison baseline.

The diversity results are shown in Table 1, where the first
four columns represent internal diversity and the last four
columns represent external diversity. From the results,
we observe that DyCodeEval generates diverse program-
ming problems both syntactically and semantically. Ad-
ditionally, we find that all baseline methods exhibit high
BLEU-4 and semantic similarity scores, as they rely on rule-
based approaches to mutate the programming problems,
which do not introduce significant diversity. In contrast,
DyCodeEval leverages an LLM agent to suggest different
scenarios and contexts, significantly increasing diversity.

4.5. Benchmarking Stability

Note that DyCodeEval generates a unique benchmark-
ing dataset each time. To assess its stability, we evaluate
whether DyCodeEval can produce consistent benchmark-
ing results despite this randomness. Specifically, we run
DyCodeEval 10 times and measure the Pass@1 scores
across these 10 generated benchmark datasets.

The mean and standard deviation of the Pass@1 scores
are presented in Fig. 6. The results show that the variance

Figure 6. Stability Results

in benchmarking scores is minimal compared to the mean
values, indicating that DyCodeEval provides stable bench-
marking results across different random trials.

4.6. Impact of Foundation LLM

In this section, we evaluate the feasibility of using less
advanced LLMs to reduce dataset generation costs. Specif-
ically, we replace our foundation model, CLAUDE-3.5-
SONNET, with CLAUDE-3.5-HAIKU. We manually sample
and assess generated problems from each model, check-
ing their consistency rate. Our observations show that the
consistency rate drops from 95% to 83%, highlighting the
need for robust and capable LLMs to serve effectively as
foundation models.

5. Application
Leveraging the dynamic nature of our method, we propose
a new metric, DivPass, to address the limitations of the
current gold standard, Pass@K. Unlike Pass@K, which
generates n candidate solutions for a fixed problem and eval-
uates correctness, our approach creates n semantic variants
of a seed problem. These variants preserve the original prob-
lem’s complexity by modifying only the description while

7

Table 1. The Diversity Results

Methods
Internal Diversity External Diversity

HumanEval MBPP HumanEval MBPP
BLEU-4 ↓ SemSim ↓ BLEU-4 ↓ SemSim ↓ BLEU-4 ↓ SemSim ↓ BLEU-4 ↓ SemSim ↓

Base 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Token Mutation 0.72 0.95 0.66 0.92 0.82 0.96 0.76 0.95
Char Mutation 0.81 0.97 0.78 0.94 0.84 0.97 0.78 0.92
Func Mutation 1.00 1.00 1.00 1.00 0.98 1.00 0.98 1.00
Insert Line 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CommSyntax 1.00 1.00 1.00 1.00 0.81 0.98 0.73 0.99
PPM 0.97 0.96 0.96 0.94 0.69 0.89 0.57 0.84

Ours 0.27 0.74 0.18 0.73 0.17 0.59 0.02 0.59

maintaining the same underlying algorithmic abstraction.
Additionally, the n variants expand the input space beyond
that of Pass@K, making it more challenging to achieve full
coverage. As a result, DivPass provides a more rigorous
assessment of code LLMs’ reasoning abilities, particularly
under potential data contamination. Compared to Pass@K,
which evaluates solutions within a fixed problem context,
DivPass introduces contextual variations during bench-
marking. This allows it to better distinguish whether a
model is merely memorizing problem context or genuinely
reasoning to solve it.

Table 2. Comparison of Pass@K and DivPass@K under contam-
ination

Model
Pass@K DivPass@K

k=3 k=5 k=10 k=3 k=5 k=10

Llama-3.2-1B 0.22 0.27 0.34 0.17 0.21 0.26
Llama-3.2-1B (C) 0.82 0.83 0.85 0.13 0.15 0.17

Llama-3.2-3B 0.35 0.40 0.48 0.31 0.36 0.43
Llama-3.2-3B (C) 0.88 0.88 0.89 0.24 0.27 0.29

Table 3. Comparison of Pass@K and textttDivPass@K on Wild
Models

Model
Pass@K DivPass@K

k=3 k=5 k=10 k=3 k=5 k=10

CodeLlama-7b-hf 0.39 0.46 0.56 0.34 0.40 0.49
CodeLlama-13b-hf 0.48 0.57 0.68 0.37 0.45 0.53

Llama-3.2-1B 0.22 0.27 0.34 0.17 0.21 0.26
Llama-3.2-3B 0.35 0.40 0.48 0.31 0.36 0.43
Llama-3.1-8B 0.48 0.56 0.65 0.39 0.45 0.53
Llama-3.1-8B-Instruct 0.72 0.77 0.83 0.64 0.69 0.75

To demonstrate the advantages of DivPass, we compare
it against Pass@K on both contaminated and wild models,
with K = 3, 5, 10 for evaluation. The results are presented
in Table 3 and Table 2. From the results in Table 2, we
observe that when the model is trained on leaked data, the
static metric Pass@K fails to accurately reflect the model’s

reasoning capabilities, with all Pass@K scores rising to
very high levels (e.g., from 0.82 to 0.89). In contrast, our
dynamic metric DivPass @K shows a slight decrease
rather than a significant increase, highlighting the sensitiv-
ity of DivPass to data contamination. When comparing
Pass@K and DivPass@K on models that were not specif-
ically trained on the leaked dataset, both metrics show con-
sistency in benchmarking code LLMs. Based on these obser-
vations, we conclude that our dynamic metric, DivPass,
effectively reflects the reasoning capabilities of code LLMs,
even under data contamination. Moreover, DivPass @K
aligns with static benchmarking metrics when there is no
data contamination.

6. Conclusion
In this paper, we introduce DyCodeEval, a new bench-
marking suite that dynamically generates semantically
equivalent diverse problems as a way to combat data con-
tamination. We break this generation up into four distinct
steps to systematically develop a new programming prob-
lem with the same algorithmic complexity but different
context. Our experimental results show that while Pass@k
with current benchmarks have caused inflated model scores,
DyCodeEval-generated questions with DivPass has
proven to perform as a reliable evaluation tool. We believe
that these results show a promising path forward.

Our proposed work has several limitations: (1) Although
LLMs provide a fully automated way to generate diverse
programming problems for benchmarking, their computa-
tional cost is a significant concern. We found that a very
large LLM is required to generate programming problems
with a high consistency rate. Therefore, a future improve-
ment could focus on enhancing the efficiency of the prob-
lem generation phase. (2) While generating questions using
DyCodeEval, we observed instances where excessive infor-
mation was provided, potentially confusing the reader. This
highlights the opportunity for improving prompt generation
through further experimentation.

8

Impact Statement
Assessing the overall capabilities of LLMs is crucial in or-
der to maintain the reliability and safety of model usage in
society. Data contamination, however, raises an issue by
causing inflated accuracy in model evaluation. Our work
proposes a new benchmark DyCodeEval, designed to ac-
curately measure a model’s true capabilities allowing us to
deepen our understanding of them.

References
Austin, J., Odena, A., Nye, M. I., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Bai, Y., Ying, J., Cao, Y., Lv, X., He, Y., Wang, X., Yu, J.,
Zeng, K., Xiao, Y., Lyu, H., Zhang, J., Li, J., and Hou, L.
Benchmarking foundation models with language-model-
as-an-examiner, 2023. URL https://arxiv.org/
abs/2306.04181.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I.,
and Zaremba, W. Evaluating large language models
trained on code. CoRR, abs/2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Chen, S., Feng, X., Han, X., Liu, C., and Yang, W. Ppm:
Automated generation of diverse programming problems
for benchmarking code generation models. Proceedings
of the ACM on Software Engineering, 1(FSE):1194–1215,
2024.

Chen, T. Y., Kuo, F.-C., Liu, H., Poon, P.-L., Towey, D., Tse,
T., and Zhou, Z. Q. Metamorphic testing: A review of
challenges and opportunities. ACM Computing Surveys
(CSUR), 51(1):1–27, 2018.

Chiang, C.-H. and yi Lee, H. Can large language models
be an alternative to human evaluations?, 2023. URL
https://arxiv.org/abs/2305.01937.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal,
A., Schoenick, C., and Tafjord, O. Think you have
solved question answering? try arc, the ai2 reasoning
challenge, 2018. URL https://arxiv.org/abs/
1803.05457.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Di, P., Li, J., Yu, H., Jiang, W., Cai, W., Cao, Y., Chen,
C., Chen, D., Chen, H., Chen, L., et al. Codefuse-13b:
A pretrained multi-lingual code large language model.
In Proceedings of the 46th International Conference on
Software Engineering: Software Engineering in Practice,
pp. 418–429, 2024.

Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S., and
Gardner, M. Drop: A reading comprehension benchmark
requiring discrete reasoning over paragraphs, 2019. URL
https://arxiv.org/abs/1903.00161.

Fernandes, P., Deutsch, D., Finkelstein, M., Riley, P., Mar-
tins, A. F. T., Neubig, G., Garg, A., Clark, J. H., Freitag,
M., and Firat, O. The devil is in the errors: Leveraging
large language models for fine-grained machine transla-
tion evaluation, 2023. URL https://arxiv.org/
abs/2308.07286.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K.,
Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y., et al.
Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring massive
multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

9

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2306.04181
https://arxiv.org/abs/2306.04181
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2305.01937
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/1903.00161
https://arxiv.org/abs/2308.07286
https://arxiv.org/abs/2308.07286
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

Jacovi, A., Caciularu, A., Goldman, O., and Goldberg, Y.
Stop uploading test data in plain text: Practical strategies
for mitigating data contamination by evaluation bench-
marks. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 5075–5084,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
308. URL https://aclanthology.org/2023.
emnlp-main.308/.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code, 2024. URL
https://arxiv.org/abs/2403.07974.

Jiang, X., Dong, Y., Wang, L., Fang, Z., Shang, Q., Li, G.,
Jin, Z., and Jiao, W. Self-planning code generation with
large language models. ACM Transactions on Software
Engineering and Methodology, 33(7):1–30, 2024.

Li, X., Lan, Y., and Yang, C. Treeeval: Benchmark-
free evaluation of large language models through tree
planning, 2024. URL https://arxiv.org/abs/
2402.13125.

Liu, H., Zhang, Y., Luo, Y., and Yao, A. C.-C. Augment-
ing math word problems via iterative question compos-
ing, 2024. URL https://arxiv.org/abs/2401.
09003.

Rajore, T., Chandran, N., Sitaram, S., Gupta, D., Sharma,
R., Mittal, K., and Swaminathan, M. Truce: Private
benchmarking to prevent contamination and improve
comparative evaluation of llms, 2024. URL https:
//arxiv.org/abs/2403.00393.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
Zhou, D., and Wei, J. Challenging big-bench tasks and
whether chain-of-thought can solve them, 2022. URL
https://arxiv.org/abs/2210.09261.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding, 2019.
URL https://arxiv.org/abs/1804.07461.

Wang, S., Li, Z., Qian, H., Yang, C., Wang, Z., Shang,
M., Kumar, V., Tan, S., Ray, B., Bhatia, P., Nalla-
pati, R., Ramanathan, M. K., Roth, D., and Xiang,
B. Recode: Robustness evaluation of code genera-
tion models. In Rogers, A., Boyd-Graber, J. L., and
Okazaki, N. (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pp. 13818–13843. Associa-
tion for Computational Linguistics, 2023. doi: 10.18653/
V1/2023.ACL-LONG.773. URL https://doi.org/
10.18653/v1/2023.acl-long.773.

Wang, Y., Yu, Z., Zeng, Z., Yang, L., Wang, C., Chen, H.,
Jiang, C., Xie, R., Wang, J., Xie, X., Ye, W., Zhang,
S., and Zhang, Y. Pandalm: An automatic evaluation
benchmark for llm instruction tuning optimization, 2024.
URL https://arxiv.org/abs/2306.05087.

Welbl, J., Liu, N. F., and Gardner, M. Crowdsourcing
multiple choice science questions, 2017. URL https:
//arxiv.org/abs/1707.06209.

Zhu, K., Chen, J., Wang, J., Gong, N. Z., Yang, D., and Xie,
X. Dyval: Dynamic evaluation of large language models
for reasoning tasks, 2024a. URL https://arxiv.
org/abs/2309.17167.

Zhu, K., Wang, J., Zhao, Q., Xu, R., and Xie, X. Dynamic
evaluation of large language models by meta probing
agents, 2024b. URL https://arxiv.org/abs/
2402.14865.

Zhu, Q., Cheng, Q., Peng, R., Li, X., Peng, R.,
Liu, T., Qiu, X., and Huang, X. Inference-time
decontamination: Reusing leaked benchmarks for
large language model evaluation. In Al-Onaizan,
Y., Bansal, M., and Chen, Y.-N. (eds.), Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2024, pp. 9113–9129, Miami, Florida,
USA, November 2024c. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.
532. URL https://aclanthology.org/2024.
findings-emnlp.532/.

10

https://aclanthology.org/2023.emnlp-main.308/
https://aclanthology.org/2023.emnlp-main.308/
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2402.13125
https://arxiv.org/abs/2402.13125
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2403.00393
https://arxiv.org/abs/2403.00393
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/1804.07461
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2023.acl-long.773
https://arxiv.org/abs/2306.05087
https://arxiv.org/abs/1707.06209
https://arxiv.org/abs/1707.06209
https://arxiv.org/abs/2309.17167
https://arxiv.org/abs/2309.17167
https://arxiv.org/abs/2402.14865
https://arxiv.org/abs/2402.14865
https://aclanthology.org/2024.findings-emnlp.532/
https://aclanthology.org/2024.findings-emnlp.532/

A. Proof of Theorem
A.1. Proof of Theorem 3.1

The total number of possible distinct outcomes is ||S|| × ||C||, the size of the random space, let N = ||S|| × ||C|| Since each
of the M samples must **not** match X1, and they are drawn independently, the exact probability is:

P (X2 ̸= X1, . . . , XM+1 ̸= X1) =

(
N − 1

N

)M

.

We use the standard inequality for the logarithm:

ln(1− x) ≥ − x

1− x
, for 0 < x < 1.

Applying this to 1
N , we get:

ln

(
N − 1

N

)
= ln

(
1− 1

N

)
≥ − 1/N

1− 1/N
= − 1

N − 1
.

Exponentiating both sides:

N − 1

N
≥ e−

1
N−1 .

Raising both sides to the power M :

(
N − 1

N

)M

≥ e−
M

N−1 .

A.2. Proof of Theorem 3.2

Each sampled item is drawn independently and uniformly from the space of size N . We analyze the probability that all M
sampled items are distinct.

The first sample can be any of the N items, the second sample must avoid the first one, so there are N − 1 choices.
Continuing this way, the probability that all M items are distinct is:

P (no collisions) =
N

N
× N − 1

N
× N − 2

N
× · · · × N − (M − 1)

N
.

Rewriting in factorial form,

P (no collisions) =
N !

NM (N −M)!
.

According to our assumption M << S|| × ||C||, Using the Stirling’s approximation, then we have

N !

(N −M)!
≥ NM exp

(
−M(M − 1)

2N

)
,

we get

P (no collisions) ≥ exp

(
−M(M − 1)

2N

)
.

11

The probability of at least one collision is the complement:

P (at least one collision) = 1− P (no collisions).

Using the bound we derived,

P (at least one collision) ≤ 1− exp

(
−M2 −M

2N

)
= 1− exp

(
− M2 −M

2||S|| × ||C||

)
A.3. Proof of Theorem 3.3

Each sample can be represented as a D-tuple of balls (b1, b2, ..., bD), where each bi is one of the N balls from bag i. The
total number of possible sample sets is:

T = ND

Since each draw is independent, each sample set is chosen uniformly from T , meaning the probability of selecting any
specific tuple is:

1

ND

Let X1 be the initial sample (first draw). For each subsequent draw Xi (where i = 2, . . . ,M + 1), the probability that
Xi = X1 (i.e., an exact match) is:

P (Xi = X1) =
1

ND

Then Theorem 3.3 could be proved through Theorem 3.1.

B. Dataset Description.
The HumanEval dataset, developed by OpenAI, is an open-source benchmark for evaluating the code generation capabilities
of pre-trained code language models (LLMs). It comprises 164 Python programming problems, each consisting of a prompt,
a canonical solution, and corresponding test inputs. Each prompt includes a natural language problem description, a function
definition, and input/output examples.

The MBPP-Sanitized dataset, proposed by Google, features 427 Python programming problems collected through crowd-
sourcing. Unlike HumanEval, it is a zero-shot dataset, meaning its prompts do not include input/output demonstrations. To
enhance its utility in experiments, we refined the prompt format by adding function headers and converting natural language
instructions into function docstrings.

C. Prompt Templates & Scenario Examples
In the following, we show the scenario examples and prompt templates used during the four steps of DyCodeEval process.

Scenario Examples

12

Real World Domain Scenario
Banking Predictive and Personal Detection in Financial Transactions

AI Automated Customer Service Chatbots
Transportation Predictive Maintenance for Fleet Vehicles

Banking Personalized Financial Risk Assessment
Healthcare Early Disease Prediction and Prevention
Education Adaptive Learning Path Recommendation

Social Networking Content Relevance and Personalization
Education Adaptive Learning Path Personalization

Social Networking Content Recommendation and Engagement Optimization

Scenario Proposer

Suggest a real-world scenarios that could provide meaningful context. The scenarios should be general yet practical,
covering areas such as {s1}, {s2}, {s3}, {s4}, {s5}, and other practical areas. Return each scenario on a separate line for
clarity and just return the scenario without another reasoning steps.

Scenario example:
<example>
{exp}
< /example>

Suggested Real-world Scenarios:
<scenario>

Content Generator

I have a natural language problem description, a description of the input types, and a real-world scenario. For each variable
in the problem, suggest a meaningful context based on the provided scenario.

Problem Description:
<problem description>
{pb}
< /problem description>

Input Types:
<input types>
{var}
< /input types>

Real-world Scenario:
<scenario>
{scenario}
< /scenario>

Context for each Variable:
<context>

Prompt Rewriter

13

Given an seed programming problem description, a selected real-world scenario, and contextualized input variables, rewrite
the original problem to fit the new context. The rewritten problem description should preserve the original problem’s
complexity and constraints while making it relevant to the given scenario. Ensure the new prompt is clear, concise, and
maintains solution applicability. Just return the new rewritten problem description without any other texts.

Problem Description:
{pb}

Real World Scenario:
{scenario}

Contextualized Input Variables:
{input variables}

Rewritten Problem Description

Validator 1

Assess whether the two given natural language instructions have the same meaning. Provide your answer as either ’Yes’ or
’No’ only.

Instruction A:
{inst a}

Instruction B:
{inst b}

Your Answer:

Validator 2

Does the following code solve the problem described in the Instruction. Provide your answer as either ’Yes’ or ’No’ only.

Instruction:
{inst a}

Code Solution:
{code}

Your Answer:

D. Human Verification
In order to add an extra level of validation between the original and generated prompts, we employ manual human verification.
Given a benchmarked dataset and DyCodeEval-generated questions for each problem, we randomly pick N pairs of
questions (each pair consists of a benchmarked problem and a newly generated question). Each pair of questions is then
examined by two graduated student level student to determine if the core algorithm and complexity of the question is
preserved, if there are inconsistency between these students, they discuss the case until the agreement is reached. Based on
the radomly sampled N pairs of questions, the consistent rate is around 95%.

14

